Nociceptin: Nature's balm for the stressed brain

January 8, 2014, The Scripps Research Institute

Collaborating scientists at The Scripps Research Institute (TSRI), the National Institutes of Health (NIH) and the University of Camerino in Italy have published new findings on a system in the brain that naturally moderates the effects of stress. The findings confirm the importance of this stress-damping system, known as the nociceptin system, as a potential target for therapies against anxiety disorders and other stress-related conditions.

"We were able to demonstrate the ability of this nociceptin anti-stress system to prevent and even reverse some of the cellular effects of in an animal model," said biologist Marisa Roberto, associate professor in TSRI's addiction research department, known as the Committee on the Neurobiology of Addictive Disorders.

Roberto was a principal investigator for the study, which appears in the January 8, 2014 issue of the Journal of Neuroscience.

A Variety of Effects

Nociceptin, which is produced in the brain, belongs to the family of opioid neurotransmitters. But the resemblance essentially ends there.

Nociceptin binds to its own specific receptors called NOP receptors and doesn't bind well to other opioid receptors. The scientists who discovered it in the mid-1990s also noted that when nociceptin is injected into the brains of mice, it doesn't kill pain—it makes pain worse.

The molecule was eventually named for this "nociceptive" (pain-producing) effect. However, subsequent studies demonstrated that, by activating its corresponding receptor NOP, nociceptin acted as an antiopioid and not only affected pain perception, but also blocked the rewarding properties of opioids such as morphine and heroin.

Perhaps of greatest interest, several studies in rodents have found evidence that nociceptin can act in the amygdala, a part of the brain that controls basic emotional responses, to counter the usual anxiety-producing effects of acute stress. There have been hints, too, that this activity occurs automatically as part of a natural stress-damping feedback response.

Scientists have wanted to know more about the anti-stress activity of the nociceptin/NOP system, in part because it might offer a better way to treat stress-related conditions. The latter are common in modern societies, including as well as the drug-withdrawal stress that often defeats addicts' efforts to kick the habit.

Reducing the Stress Reaction

For the new study, Roberto and her collaborators looked in more detail at the nociceptin/NOP system in the central amygdala.

First, Markus Heilig's laboratory at the National Institute on Alcohol Abuse and Alcoholism (NIAAA), part of the NIH, measured the expression of NOP-coding genes in the central amygdala in rats. Heilig's team found strong evidence that stress changes the activity of nociceptin/NOP in this region, indicating that the system does indeed work as a feedback mechanism to damp the . In animals subjected to a standard laboratory stress condition, NOP gene activity rose sharply, as if to compensate for the elevated stress.

Roberto and her laboratory at TSRI then used a separate technique to measure the electrical activity of stress-sensitive neurons in the central amygdala. As expected, this activity rose when levels of the stress hormone CRF rose and started out at even higher levels in the stressed rats. But this stress-sensitive neuronal activity could be dialed down by adding nociceptin. The stress-blocking effect was especially pronounced in the restraint-stressed rats—probably due to their stress-induced increase in NOP receptors.

Finally, biologist Roberto Ciccocioppo and his laboratory at the University of Camerino conducted a set of behavioral experiments showing that injections of nociceptin specifically into the rat central amygdala powerfully reduced anxiety-like behaviors in the stressed rats, but showed no behavioral effect in non-stressed rats.

The three sets of experiments together demonstrate, said Roberto, that "stress exposure leads to an over-activation of the nociceptin/NOP system in the central amygdala, which appears to be an adaptive feedback response designed to bring the brain back towards normalcy."

In future studies, she and her colleagues hope to determine whether this nociceptin/NOP feedback system somehow becomes dysfunctional in conditions. "I suspect that chronic induces changes in amygdala neurons that can contribute to the development of some anxiety disorders," said Roberto.

Compounds that mimic nociceptin by activating NOP receptors—but, unlike nociceptin, could be taken in pill form—are under development by pharmaceutical companies. Some of these appear to be safe and well tolerated in lab animals and may soon be ready for initial tests in human patients, Ciccocioppo said.

Explore further: Study underlines potential of anti-stress peptide to block alcohol dependence

More information: "Restraint stress alters nociceptin/orphanin FQ and CRF systems in the rat central amygdala: significance for anxiety-like behaviors," www.jneurosci.org/content/34/2/363.abstract

Related Stories

Study underlines potential of anti-stress peptide to block alcohol dependence

December 9, 2011
New research by scientists at the Scripps Research Institute has underlined the power of an endogenous anti-stress peptide in the brain to prevent and even reverse some of the cellular effects of acute alcohol and alcohol ...

Have researchers found a new treatment for sepsis?

December 3, 2013
Sepsis, or septicaemia, is a devastating disease that is difficult to diagnose early and for which treatment options are limited. The number of deaths from sepsis exceeds those from lung cancer, and from breast and bowel ...

Research points to brain's 'dark side' as key to cocaine addiction

June 12, 2013
(Medical Xpress)—Scientists at The Scripps Research Institute (TSRI) have found evidence that an emotion-related brain region called the central amygdala—whose activity promotes feelings of malaise and unhappiness—plays ...

High levels of maternal care has life-long impact on vulnerability to stress

December 12, 2013
A new study shows that high levels of maternal care during the early post-natal period in rodents can reduce the sensitivity of the offspring to stressful events during adulthood. Maternal care is shown to chemically modify ...

Stress steroid mediated withdrawal anxiety in dependent rats reversible by flumazenil

October 7, 2013
SUNY Downstate Medical Center announced today that Sheryl Smith, PhD, professor of physiology and pharmacology, has published new findings demonstrating a reproducible pathology that may help shed light on anxiety and mood ...

Stress early in life leads to adulthood anxiety and preference for 'comfort foods'

July 30, 2013
Research to be presented at the Annual Meeting of the Society for the Study of Ingestive Behavior (SSIB), the foremost society for research into all aspects of eating and drinking behavior, suggests that exposure to stress ...

Recommended for you

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.