Piggy-backing proteins ride white blood cells to wipe out metastasizing cancer

January 6, 2014
Credit: Cornell University

Cornell biomedical engineers have discovered a new way to destroy metastasizing cancer cells traveling through the bloodstream – lethal invaders that are linked to almost all cancer deaths – by hitching cancer-killing proteins along for a ride on life-saving white blood cells.

"These circulating are doomed," said Michael King, Cornell professor of biomedical engineering and the study's senior author. "About 90 percent of cancer deaths are related to metastases, but now we've found a way to dispatch an army of killer white that cause apoptosis – the cancer cell's own death – obliterating them from the bloodstream. When surrounded by these guys, it becomes nearly impossible for the cancer cell to escape."

Metastasis is the spread of a cancer cells to other parts of the body. Surgery and radiation are effective at treating primary tumors, but difficulty in detecting metastatic cancer cells has made treatment of the spreading cancers problematic, say the scientists.

King and his colleagues injected human blood samples, and later mice, with two proteins: E-selectin (an adhesive) and TRAIL (Tumor Necrosis Factor Related Apoptosis-Inducing Ligand). The TRAIL protein joined with the E-selectin protein was able to stick to leukocytes – white blood cells – abundant in the bloodstream. When a cancer cell comes into contact with TRAIL, which is nearly unavoidable in the frenzied flow of blood, the cancer cell essentially kills itself.

"The mechanism is surprising and unexpected in that this repurposing of white blood cells in flowing blood is more effective than directly targeting the cancer cells with liposomes or soluble protein," say the authors.

In the laboratory, King and his colleagues tested this concept's efficacy.

The video will load shortly
After treatment, cancer cells die and appear as yellow in video. Credit: Cornell University

When treating cancer cells with the proteins in saline, they found a 60 percent success rate in killing the cancer cells. In normal laboratory conditions, the saline lacks to serve as a carrier for the adhesive and killer proteins. Once the proteins were added to flowing blood that mimicked human-body conditions, however, the success rate in killing the cancer cells jumped to nearly 100 percent.

The study, "TRAIL-Coated Leukocytes that Kill Cancer Cells in the Circulation," was published online today in the journal Proceedings of the National Academy of Sciences.

Explore further: Bioengineers discover the natural switch that controls spread of breast cancer cells

More information: TRAIL-coated leukocytes that kill cancer cells in the circulation, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1316312111

Related Stories

Bioengineers discover the natural switch that controls spread of breast cancer cells

January 23, 2013
With a desire to inhibit metastasis, Cornell biomedical engineers have found the natural switch between the body's inflammatory response and how malignant breast cancer cells use the bloodstream to spread.

Spontaneous fusion with macrophages empowers cancer cells to spread

December 15, 2013
Cancer cells that spontaneously fuse with macrophages, the immune system's healthy scavenger cells, play a key role in the metastasis, or spread of the cancer to other areas of the body, according to research to be presented ...

Rock And Rho: Proteins that help cancer cells groove

December 26, 2013
Biologists at The Johns Hopkins University have discovered that low oxygen conditions, which often persist inside tumors, are sufficient to initiate a molecular chain of events that transforms breast cancer cells from being ...

Targeting protein could prevent metastasis of cancer cells

November 14, 2012
(Medical Xpress)—Researchers at King's College London have uncovered a protein required by cancer cells to spread to other parts of the body, highlighting it as a potential target for future treatments to prevent secondary ...

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.