Study discovers new regulators of the most prevalent liver disease

January 7, 2014

Excessive alcohol consumption, as well as obesity leads to the accumulation of fat in the liver, a disease termed fatty liver disease (FLD) or steatosis. FLD is one of the most prevalent diseases in Western societies and affects about 30% of the adult population. Importantly, FLD increases the risk of liver failure, diabetes and cancer and no pharmacological therapies exist for this detrimental disease.

The Genes, Development and Disease research team led by Erwin Wagner, head of the BBVA Foundation-Spanish National Cancer Research Centre (CNIO) Cancer Cell Biology Programme, in collaboration with Johan Auwerx from the EPFL in Lausanne, have discovered novel factors, the AP-1 proteins, which are critically involved in FLD pathogenesis. These results are featured on the cover of the latest issue of Cell Metabolism, the leading journal in the field of metabolism.

The CNIO team found that the AP-1 gene Fra-1 is reduced in the of obese mice. To study the functional contribution of these proteins to fat metabolism in the liver, researchers used transgenic mice with increased or decreased AP-1 expression in the liver.

Strikingly, increased expression of some of these genes, such as Fra-1 or Fra-2, in the liver of mice completely prevented the accumulation of fat and FLD. "In humans, unhealthy diet is the main cause of FLD. Therefore, we used a fat-rich diet to induce and FLD in mice. When we switched on Fra-1 in the liver, all the fat disappeared, the effect was stunning", states first author Sebastian Hasenfuss. In addition, Fra-1 also prevented inflammation and liver damage in obese mice.

The CNIO researchers describe the mechanism underlying the effect of AP-1 proteins on fat metabolism. "AP-1 proteins are master regulators of fat metabolism", explains corresponding author Erwin Wagner. He adds that "these proteins control how the liver takes up fat from the blood stream."

Interestingly, the AP-1 proteins c-Fos or JunD, which are related to the Fra proteins, had the opposite effect on in the liver. The CNIO research team proposes that the imbalance between the different AP-1 proteins represents a key step in FLD pathogenesis.

Explore further: CNIO researchers discover a new regulator of drug detoxication

More information: Regulation of steatohepatitis and PPARγ signaling by distinct AP-1 dimers. Hasenfuss SC, Bakiri L, Thomsen MK, Williams EG, Auwerx J, Wagner EF. Cell Metabolism (2013) dx.doi.org/10.1016/j.cmet.2013.11.018

Related Stories

CNIO researchers discover a new regulator of drug detoxication

October 11, 2013
Drug abuse and alcohol are some of the most frequent causes of liver damage, particularly in developed countries. Such kind of liver damage can cause irreversible liver failure and even cancer. Researchers from the Spanish ...

Surprising discovery: The skin communicates with the liver

December 6, 2013
Researchers from the University of Southern Denmark have discovered that the skin is capable of communicating with the liver. The discovery has surprised the scientists, and they say that it may help our understanding of ...

Scientists decipher how the immune system induces liver damage during hepatitis

November 8, 2013
Viral infections are the primary cause of liver inflammation or hepatitis, affecting hundreds of millions of people all over the world, and they represent a public health problem worldwide. The acute condition can cause irreversible ...

Team unlocks secrets of diabetes drug: How and why metformin needs to interact with insulin to be effective

November 3, 2013
About 120 million people around the world with Type 2 diabetes – and two million in Canada – take the drug metformin to control their disease.

Scientists develop new compound that reverses fatty liver disease

December 19, 2012
(Phys.org)—Scientists from the Florida campus of The Scripps Research Institute (TSRI) have developed the first synthetic compound that can reverse the effects of a serious metabolic condition known as fatty liver disease. ...

Breaking the cycle of obesity, inflammation and disease

December 19, 2013
Researchers at University of Michigan have illuminated an aspect of how the metabolic system breaks down in obesity. The findings provide additional evidence that a drug entering clinical trials at the university could reverse ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.