Protein serves as a natural boost for immune system fight against tumors

January 30, 2014, University of Pennsylvania School of Medicine

Substances called adjuvants that enhance the body's immune response are critical to getting the most out of vaccines. These boosters stimulate the regular production of antibodies—caused by foreign substances in the body—toxins, bacteria, foreign blood cells, and the cells of transplanted organs.

But, biologists think that adjuvants could be much better: The currently available licensed adjuvants are poor inducers of T and even worse at inciting killer T that clear viruses, as well as eradicate cancer cells.

The lab of David Weiner, PhD, professor of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, identifies new adjuvants that can produce the desired T-cell response. "Different molecular adjuvants, such as cytokines, are being studied as a way to increase the efficacy of vaccines," explains Weiner. "The development of DNA-based vaccines with cytokine adjuvants has emerged as particularly promising for inducing antiviral and anti-tumor, cell-mediated immune responses."

Daniel Villarreal, a graduate student in the Weiner lab, and colleagues report in Cancer Research this week that the protein IL-33 boosts the immune system of a human papilloma virus of cancer. IL-33 is a cytokine, a small protein that signals such as T cells to travel to a site of infection or injury.

Although still experimental, DNA vaccines are a conceptual leap forward over standard vaccines, as they are not live and never expose the person being vaccinated to a true pathogen or infectious agent. They are transient and do their job by fooling the host's immune system into believing there is an infectious agent invading their cells so that the host responds by producing protective levels of T cells, in particular CD8 killer T cells. DNA vaccines have been studied in animal models of viral, bacterial, and parasitic disease, as well as animal models of tumors. Due to major advances in their immune potency DNA vaccines are being studied in human clinical trials for treating cancer and infectious diseases.

The team showed that IL-33 can further enhance the response of memory T cells, the long-lived cells that can patrol and protect the body from infections and cancers, when given with a DNA vaccine compared to a vaccine without IL-33. What's more, IL-33 and the DNA vaccine augmented immunological responses in both CD4 helper T cells and CD8 killer T cells, with a large proportion of CD8 killer T cells demonstrating a further improvement in the ability of DNA vaccines to drive the to kill tumor cells in animals.

"Our results support the further study and possible development of IL-33 as adjuvants in vaccinations against pathogens, including in the context of antitumor immunotherapy," says Weiner. Additional cancer and infectious diseases studies in diverse animal models are in progress.

Explore further: Explainer: What is the immune system?

Related Stories

Explainer: What is the immune system?

January 8, 2014
The immune system is an integral part of our body, keeping us safe from diseases – from the common cold to more severe illnesses such as cancer.

Vaccine used to treat cervical precancers triggers immune cell response

January 29, 2014
Preliminary results of a small clinical trial show that a vaccine used to treat women with high-grade precancerous cervical lesions triggers an immune cell response within the damaged tissue itself. The Johns Hopkins scientists ...

Vaccine adjuvant uses host DNA to boost pathogen recognition

April 5, 2013
Aluminum salts, or alum, have been injected into billions of people as an adjuvant to make vaccines more effective. No one knows, however, how they boost the immune response. In the March 19, 2013, issue of the Proceedings ...

Clinical trial assesses anti-melanoma vaccine's ability to induce an anti-cancer immune response

July 11, 2013
Cancer vaccines prime the immune system to attack cancer cells, decreasing tumor progression. IL-12p70, a molecule produced by certain types of immune cells, has been shown to reduce tumor progression, but delivering it as ...

Adjuvant combo shows potential for universal influenza vaccine

June 8, 2011
Researchers at National Jewish Health have discovered how to prime a second arm of the immune system to potentially boost influenza vaccine effectiveness. A combination of two adjuvants, chemicals used to boost the effectiveness ...

Vaccine study reveals link between immunity and cells' starvation response

December 5, 2013
One of the most effective vaccines in history has been the yellow fever vaccine, which was developed in the 1930s and has been administered to more than 500 million people.

Recommended for you

A new tactic for starving tumors

June 25, 2018
A tumor's goal is simple: to grow, grow, grow, by making more cancer cells. But that often means growing so fast that the oxygen supply gets scarce, at which point cells within the tumor start to suffocate. Without oxygen, ...

Immune profile for successful cancer immunotherapy discovered

June 25, 2018
In a new study published online June 25, 2018 in Nature Medicine, UC San Francisco researchers have identified a key biological pathway in human cancer patients that appears to prime the immune system for a successful response ...

'Embattled' breast cancer drugs could be revived by new discovery

June 25, 2018
More than 60 percent of breast cancer cases involve defects in the same biochemical chain of events within cancer cells—known as the PI3 kinase (PI3K) pathway—but efforts to develop therapies targeting this pathway have ...

Lethal prostate cancer treatment may benefit from combination immunotherapy

June 25, 2018
Researchers at the Johns Hopkins Kimmel Cancer Center and the Bloomberg~Kimmel Institute for Cancer Immunotherapy (BKI) released a study investigating the use of combination checkpoint immunotherapy in the treatment of a ...

New drugs are improving survival times for patients with aggressive type of blood cancer, study finds

June 25, 2018
Survival times for a highly aggressive type of blood cancer have nearly doubled over the last decade due to the introduction of new targeted drugs, a Yorkshire study has shown.

Dying cancer cells make remaining glioblastoma cells more aggressive and therapy-resistant

June 21, 2018
A surprising form of cell-to-cell communication in glioblastoma promotes global changes in recipient cells, including aggressiveness, motility, and resistance to radiation or chemotherapy.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.