Residual activity 'hot spots' in the brain key for vision recovery in stroke patients

January 2, 2014, IOS Press

Scientists know that vision restoration training (VRT) can help patients who have lost part of their vision due to glaucoma, optic nerve damage, or stroke regain some of their lost visual functions, but they do not understand what factors determine how much visual recovery is achieved.

New evidence published in Restorative Neurology and Neuroscience suggests that vision restoration depends mostly on activity of residual vision that is still left after the injury and that both local neuronal activity and activity in the immediate surround influence the development of visual recovery "hot spots." This shows that recovery of vision is mediated by partially surviving neurons.

Researchers from the Institute of Medical Psychology and Department of Computer Sciences, Otto-von-Guericke-University of Magdeburg, and the Max Planck Institute for Dynamics and Self-Organisation, Goettingen, Germany, conducted a retrospective analysis of multiple visual field tests before and after at least six months of VRT in 32 stroke patients with hemianopia, which is a loss of vision in half of the visual field. The test, known as high-resolution perimetry (HRP), presents visual stimuli on a computer monitor to which the patient has to respond by pressing a key on the keyboard.

The result is a map that indicates areas that are intact (unaffected by the injury), areas that are completely blind, and "areas of residual vision," where vision is reduced but not absent. Here, the response time is slower or the correct response occurs only occasionally. Repetitive stimulation through daily one-hour vision training with VRT was directed at these "areas of residual function" to strengthen their performance.

"Hot spots" were defined as those locations that were initially impaired at baseline but then recovered after VRT training, while "cold spots" remained impaired where vision training did not help. Of almost 11,000 visual spots analyzed from the 23 patients, 688 were found to be hot spots while 3,426 were cold spots. The average absolute improvement due to VRT training was 6%.

The investigators used computer-based data mining technology to study which features of the baseline HRP charts obtained before vision training could predict vision recovery. They looked at different topographic features and found that visual field areas have a higher probability of becoming vision restoration "" if they had higher local residual vision at baseline, more residual activity in a spatially limited surrounding area (of 5 degrees of visual angle), and if they were located closer to the blind field (scotoma). Vision restoration was not influenced much by residual activity at further distances, say the authors.

"Our findings confirm the special role of residual structures in vision restoration, which is likely mediated by surviving cells in partially damaged brain tissue," says lead author Bernhard A. Sabel, PhD, of the Institute of Medical Psychology, Otto-von-Guericke-University of Magdeburg. Dr. Sabel suggests that the massive visual stimulation presented during VRT enhances visual recovery by forcing subjects to focus their attention on "compromised" sectors of the which are partially damaged and repeating this daily helps recover vision loss. "This new understanding now allows us to offer training on the internet through online training," says Dr. Sabel.

Explore further: Noninvasive current stimulation improves sight in patients with optic nerve damage

More information: Restorative Neurology and Neuroscience, 2013. DOI: 10.3233/RNN-139019

Related Stories

Noninvasive current stimulation improves sight in patients with optic nerve damage

October 31, 2011
It has long been thought that blindness after brain lesions is irreversible and that damage to the optic nerves leads to permanent impairments in everyday activities such as reading, driving, and spatial orientation. A new ...

Vision restored with total darkness

February 14, 2013
Restoring vision might sometimes be as simple as turning out the lights. That's according to a study reported on February 14 in Current Biology, a Cell Press publication, in which researchers examined kittens with a visual ...

Hear to see: New method for the treatment of visual field defects

May 30, 2012
Patients who are blind in one side of their visual field benefit from presentation of sounds on the affected side. After passively hearing sounds for an hour, their visual detection of light stimuli in the blind half of their ...

Corticosteroid added to standard treatment improves eyesight in patients with sudden vision loss

November 19, 2013
Nonarteritic anterior ischemic optic neuropathy (NAION) is one of the leading causes of sudden and irreversible loss of vision in older adults. In a prospective randomized trial of 60 patients with NAION, investigators have ...

Touch and vision vital for sight

October 31, 2013
Researchers at Monash University Gippsland hope to improve the sight of people receiving visual prosthetics, such as bionic eyes, by proving the importance of both 'touch' and 'vision' to how we see.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.