Scientists develop new approach to study how genetic variants affect gene expression

January 10, 2014 by Kim Irwin, University of California, Los Angeles
Yeast cells expressing proteins.

(Medical Xpress)—Each individual carries a unique version of the human genome. Genetic differences can influence traits such as height, weight and vulnerability to disease, but precisely what these genetic variants are and how they exercise their impact is mostly unknown. UCLA researchers have now developed a novel approach to study the ways in which these individual differences affect how strongly certain genes are "expressed"—that is, how they are translated into the proteins that do the actual work in cells.

Using different strains of a yeast called Saccharomyces cerevisiae, a single-celled fungus, they studied hundreds of thousands of genetically different yeast cells—orders of magnitude more than previously examined—making their approach statistically powerful and significantly more revealing about how influence .

They also directly studied , an approach that differed from earlier work, which focused on levels of messenger RNA (mRNA), the intermediate molecules that cells use to read genes and translate them into proteins. While mRNAs are easier to measure than proteins, their levels don't always correspond to protein levels.

The two-and-a-half-year study found that the of a typical gene is influenced by many more genetic variants than previously thought and that the effects of genetic differences on mRNA levels corresponded much more closely to the effects on protein expression than seen earlier. Additionally, there is a complex web of variants that affects a large fraction of the proteins in cells.

The work could shed light on the study of disease risk in humans, as genetic variants that influence disease often act by affecting the expression of genes. Clinical applications may eventually flow from a better understanding of the process of genetic variants and protein expression.

The research appears in the Jan. 8 early online edition of the journal Nature.

Explore further: Men and women are different in terms of genetic predispositions, study shows

More information: "Genetics of single-cell protein abundance variation in large yeast populations." Frank W. Albert, Sebastian Treusch, Arthur H. Shockley, Joshua S. Bloom, Leonid Kruglyak. Nature (2014) DOI: 10.1038/nature12904

Related Stories

Men and women are different in terms of genetic predispositions, study shows

September 20, 2012
We are not all the same when it comes to illness. In fact, the risk of developing a disease such as diabetes or heart disease varies from one individual to another. A study led by Emmanouil Dermitzakis, Louis-Jeantet Professor ...

New genetic analysis method holds promise for understanding causes of disease

December 17, 2013
(Medical Xpress)—University of Michigan School of Public Health researchers have developed a new method for identifying rare gene variants, which scientists now believe are more informative for human disease studies than ...

A protein complex for the long haul

November 18, 2013
A multiprotein complex called TREX plays a key role in expression of the genetic information. Moreover, as a new study demonstrates – the longer the gene, the greater the need for TREX function.

Myotonic dystrophy disrupts normal control of gene expression in the heart

January 9, 2014
Disruption of a transcription network controlled by MEF2 in heart tissue of people with myotonic dystrophy type 1 – an inherited form of muscular dystrophy with symptoms starting in early adulthood – affects activity ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.