Single-cell analysis shows how embryonic cells maintain proper patterns of gene regulation

January 15, 2014
Developmental biology: Preserving embryonic instructions
Normal levels of functional TRIM28 protein (green) are detectable within an hour after transplanting newly fertilized TRIM28-deficient nuclei into normal embryos that lack nuclei.

Chromosomes are heavily adorned with methyl chemical groups that alter the activity of nearby genes. The parental chromosomes, contributed by sperm and egg, display distinctly different methylation patterns and most modifications are stripped away shortly after fertilization. However, a subset of these 'imprints' are protected. Now, a sophisticated technique for single-cell analysis has broadened the understanding of this process.

Daniel Messerschmidt's team at the A*STAR Institute of Medical Biology in Singapore previously identified a protein called TRIM28 that binds certain methylated sites and recruits enzymes that preserve the appropriate imprinting pattern. They noted that individual mouse embryos lacking the TRIM28 gene showed highly variable developmental abnormalities, an observation they could not fully explain at the time. "Our hypothesis was that these embryos were 'mosaics' in which different genes were affected, causing different defects in individual cells," says Messerschmidt. "Thus, the embryo as a whole would always display a unique phenotype."

To test this model, Messerschmidt's team partnered with William Burkholder and co-workers at the A*STAR Institute of Molecular and Cell Biology, who had developed an assay that could be performed within a sort of 'microchip' to analyze the chromosomal methylation patterns of individual embryonic cells.

In the earliest days of the embryo, new proteins are generated entirely from maternally produced RNAs contained within the egg, with embryonic genes only taking control later in development. The researchers therefore generated genetically modified female mice whose eggs lacked TRIM28, so that they could better characterize the associated protein's post-fertilization role. Their analysis of six genetic regions revealed that normal embryonic imprinting patterns are disrupted when maternal TRIM28 is absent. Importantly, the specific affected regions varied between cells, confirming Messerschmidt's mosaic hypothesis. Although several imprints remained intact in any given cell, the cumulative effect is fatal to the embryo. "We only examined 6 of 25-plus imprinted regions," says Messerschmidt. "The lethal phenotype results from the widespread effect over these many loci."

Remarkably, the researchers could recover a modest percentage of normally imprinted embryos by transplanting genetic material from newly fertilized, TRIM28-deficient embryos into healthy embryos that contained normal levels of maternal TRIM28 (see image). These developed into healthy, fertile mice. Given that similar defects in imprinting maintenance have been observed in human diseases, Burkholder believes these findings could aid early-stage diagnostics and even treatment. "We are exploring the possibility of adapting our assay for humans, and testing in vitro-fertilized embryo biopsies for imprinting defects is one idea we have in mind," he says.

Explore further: A protein thwarts developmental abnormalities by preventing removal of critical chemical marks from embryonic DNA

More information: Lorthongpanich, C., Cheow, L. F., Balu, S., Quake, S. R., Knowles, B. B., et al. Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science 341, 1110–1112 (2013). dx.doi.org/10.1126/science.1240617

Messerschmidt, D. M., de Vries, W., Ito, M., Solter, D., Ferguson-Smith, A. & Knowles, B. B. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 335, 1499–1502 (2012). dx.doi.org/10.1126/science.1216154

Related Stories

A protein thwarts developmental abnormalities by preventing removal of critical chemical marks from embryonic DNA

August 2, 2012
When a mammalian egg gets fertilized, it essentially undergoes a genomic ‘reset’ that transforms it into an embryonic cell capable of developing into the full spectrum of adult tissues. Daniel Messerschmidt and ...

Scientists discover key component in the mother's egg critical for survival of newly formed embryo

March 29, 2012
An international team led by scientists at A*STAR’s Institute of Medical Biology (IMB) discovered that a protein, called TRIM28, normally present in the mother’s egg, is essential right after fertilization, to ...

Unlocking a secret of stem cell stability

November 6, 2013
Proper embryonic development depends on a signaling pathway that helps to preserve stem cell "immaturity."

Researchers create novel assay to test for epigenetic abnormalities in preimplanted mice embryos

September 27, 2013
Scientists from A*STAR's Institute of Medical Biology (IMB) and Institute of Molecular and Cell Biology (IMCB) have created a novel assay to probe the DNA methylation stateof multiple genomic loci in single cells. This work ...

Researchers develop new tool to find molecular changes in embryos

September 6, 2013
(Medical Xpress)—A combined team of researchers from the U.S. and Singapore has developed a new tool to help spot molecular changes in embryos. As the team describes in their paper published in the journal Science, the ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.