Split decision: Stem cell signal linked with cancer growth

February 2, 2014
Split decision: Stem cell signal linked with cancer growth
This is a confocal micrograph of a human melanoma cell undergoing division or mitosis. The resulting daughter cells are temporarily linked by a bridge of remaining cytoplasm. Green staining labels the endoplasmic reticulum; red colors the mitochondria. Blue indicates the chromosomes. Credit: Wellcome

Researchers at the University of California, San Diego School of Medicine have identified a protein critical to hematopoietic stem cell function and blood formation. The finding has potential as a new target for treating leukemia because cancer stem cells rely upon the same protein to regulate and sustain their growth.

Hematopoietic stem cells give rise to all other blood cells. Writing in the February 2, 2014 advance online issue of Nature Genetics, principal investigator Tannishtha Reya, PhD, professor in the Department of Pharmacology, and colleagues found that a protein called Lis1 fundamentally regulates asymmetric division of hematopoietic stem cells, assuring that the stem cells correctly differentiate to provide an adequate, sustained supply of new blood cells.

Asymmetric division occurs when a stem cell divides into two of unequal inheritance: One daughter differentiates into a permanently specialized cell type while the other remains undifferentiated and capable of further divisions.

"This process is very important for the proper generation of all the cells needed for the development and function of many normal tissues," said Reya. When cells divide, Lis1 controls orientation of the mitotic spindle, an apparatus of subcellular fibers that segregates chromosomes during cell division.

"During division, the spindle is attached to a particular point on the cell membrane, which also determines the axis along which the cell will divide," Reya said. "Because proteins are not evenly distributed throughout the cell, the axis of division, in turn, determines the types and amounts of proteins that get distributed to each daughter cell. By analogy, imagine the difference between cutting the Earth along the equator versus halving it longitudinally. In each case, the countries that wind up in the two halves are different."

When researchers deleted Lis1 from mouse hematopoietic stem cells, differentiation was radically altered. Asymmetric division increased and accelerated differentiation, resulting in an oversupply of specialized cells and an ever-diminishing reserve of undifferentiated stem cells, which eventually resulted in a bloodless mouse.

"What we found was that a large part of the defect in blood formation was due to a failure of stem cells to expand," said Reya. "Instead of undergoing symmetric divisions to generate two stem cell daughters, they predominantly underwent asymmetric division to generate more specialized cells. As a result, the mice were unable to generate enough stem cells to sustain blood cell production."

The scientists next looked at how cancer in mice behaved when the Lis1 signaling pathway was blocked, discovering that they too lost the ability to renew and propagate. "In this sense, the effect Lis1 has on leukemic self-renewal parallels its role in normal stem cell self-renewal," Reya said.

Reya said the findings shed new light on the fundamental regulators of cell growth both in normal development and in cancer.

"Our work shows that elimination of Lis1 potently inhibits cancer growth, and identifies Lis1 and other regulators of protein inheritance as a new class of molecules that could be targeted in cancer therapy."

In the long term, Reya noted, it remains to be determined whether inhibiting Lis1 in would produce unacceptable consequences in as well. "A number of commonly used hemotherapy agents target the machinery that controls cell division. Although these agents can be toxic, their effects on cancer cells are much more potent than their effects on normal cells, and so they continue to be used. Agents that target Lis1 might be more specific and less toxic, which would give them significant clinical value."

Explore further: New breast cancer stem cell findings explain how cancer spreads

More information: Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia, DOI: 10.1038/ng.2889

Related Stories

New breast cancer stem cell findings explain how cancer spreads

January 14, 2014
Breast cancer stem cells exist in two different states and each state plays a role in how cancer spreads, according to an international collaboration of researchers. Their finding sheds new light on the process that makes ...

KIT researchers develop artificial bone marrow

January 10, 2014
Artificial bone marrow may be used to reproduce hematopoietic stem cells. A prototype has now been developed by scientists of KIT, the Max Planck Institute for Intelligent Systems, Stuttgart, and Tübingen University. The ...

Blood stem cell longevity explained

November 26, 2013
(Medical Xpress)—The blood stem cells that live in bone marrow are at the top of a complex family tree. Such stem cells split and divide down various pathways that ultimately produce red cells, white cells and platelets. ...

Study identifies essential molecule in formation of differentiated blood cells

October 7, 2013
New research in the Journal of Experimental Medicine identifies a protein that controls the formation of different types of mature blood cells – a finding that could be important to developing new treatments for blood diseases ...

Scientists identify key regulator controlling formation of blood-forming stem cells

September 26, 2013
Stem cell scientists have moved one step closer to producing blood-forming stem cells in a Petri dish by identifying a key regulator controlling their formation in the early embryo, shows research published online today in ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.