Environment influences ability of bacterium to block malaria transmission

February 17, 2014 by A'ndrea Elyse Messer, Pennsylvania State University

The environment significantly influences whether or not a certain bacterium will block mosquitoes from transmitting malaria, according to researchers at Penn State.

"Bacteria in the genus Wolbachia represent a promising new tool for controlling malaria due to their demonstrated ability to block the development of the pathogen within Anopheles —the mosquitoes that are responsible for the transmission of malaria parasites in many parts of the world," said Courtney Murdock, postdoctoral researcher, Center for Infectious Disease Dynamics and Department of Entomology, Penn State. "However, much of the work on the Wolbachia-malaria interaction has been conducted under highly simplified laboratory conditions. In this study, we investigated the ability of Wolbachia to block transmission of malaria—Plasmodium—parasites across variable environmental conditions, which are more reflective of conditions in the field."

The researchers used a species of malaria parasite—Plasmodium yoelii—that affects rodents and the mosquito Anopheles stephensi as a model system to investigate whether Wolbachia would block the ability of the malaria parasite to infect the mosquitoes. The scientists divided the mosquitoes into an uninfected control group and a group infected with Wolbachia. Next, the team raised all groups of mosquitoes in incubators set to different experimental temperatures—68, 72, 75, 79 and 82 degrees Fahrenheit.

The scientists found that at 82 degrees Fahrenheit, Wolbachia reduced the number of mosquitoes infected by malaria parasites, the number of malaria parasites within each mosquito and the intensity of oocysts—non-infectious cysts created by malaria parasites that occur on the outer lining of a mosquito's midgut. At 75 degrees Fahrenheit, Wolbachia had no effect on prevalence of malaria parasites, but increased oocyst intensity. At 68 degrees Fahrenheit, Wolbachia had no effect on prevalence of parasites or intensity of oocysts.

In addition, the team identified a previously undiscovered effect of Wolbachia. Infection with the bacterium reduced the development of sporozoites across all temperatures, suggesting that Wolbachia and malaria parasites may compete for similar hosts.

"Typically, the more oocysts a mosquito has on its midgut, the more sporozoites it produces," Murdock said. "So, depending on the environmental temperature, Wolbachia either reduced, enhanced or had no effect on the number of oocysts. At 75 degrees Fahrenheit, Wolbachia-infected mosquitos had three times the numbers of oocysts relative to uninfected mosquitoes. Thus, we would predict these mosquitoes to produce more sporozoites. But instead we see that this is not the case, and that is because Wolbachia infection significantly reduces the number of sporozoites produced per oocyst regardless of the environmental temperature. This effect counteracts the enhancement we see at 75 degrees Fahrenheit. How the influence of Wolbachia on parasite establishment and the production of sporozoites under different temperatures plays out to ultimately affect transmission remains to be determined."

The researchers published their results in a recent issue of Nature's Scientific Reports.

According to Murdock, the team's results demonstrate that the transmission-blocking ability of Wolbachia is significantly influenced by the environment.

"These results suggest that the development of this promising control technology requires an improved understanding of how mosquitoes, Wolbachia and malaria parasites will interact in diverse transmission settings," she said. "The worst-case scenario is not whether this technology will be ineffective under particular environmental conditions, but whether or not there is a possibility that certain environments will actually enhance by Wolbachia."

The researchers plan to duplicate their experiment using a species of that affects humans to determine whether or not the temperature effects they observed in the mouse model system also will be observed in a human system. The team plans to explore the effects of additional environmental variation—such as daily temperature fluctuation and differential access to food resources in the mosquito larval and adult environments—on the transmission-blocking ability of Wolbachia.

Explore further: Bacterial infection in mosquitoes renders them immune to malaria parasites

Related Stories

Bacterial infection in mosquitoes renders them immune to malaria parasites

May 9, 2013
Scientists funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, have established an inheritable bacterial infection in malaria-transmitting Anopheles mosquitoes ...

Wolbachia bacteria reduce parasite levels and kill the mosquito that spreads malaria

May 19, 2011
Wolbachia are bacteria that infect many insects, including mosquitoes. However, Wolbachia do not naturally infect Anopheles mosquitoes, which are the type that spreads malaria to humans. Researchers at the Johns Hopkins Bloomberg ...

Study explores evolution of bacteria that can be used to fight dengue

December 16, 2013
Wolbachia, a symbiont that resides naturally up to 70% of all insect species, are probably the most prevalent infectious bacteria on Earth. In 2008 Luis Teixeira, now a principal investigator at the Instituto Gulbenkian de ...

Scientists engineer mosquito immune system to fight malaria

December 22, 2011
Researchers at the Johns Hopkins Malaria Research Institute have demonstrated that the Anopheles mosquito's innate immune system could be genetically engineered to block the transmission of malaria-causing parasites to humans. ...

Recommended for you

Creation of synthetic horsepox virus could lead to more effective smallpox vaccine

January 19, 2018
UAlberta researchers created a new synthetic virus that could lead to the development of a more effective vaccine against smallpox. The discovery demonstrates how techniques based on the use of synthetic DNA can be used to ...

Study ends debate over role of steroids in treating septic shock

January 19, 2018
The results from the largest ever study of septic shock could improve treatment for critically ill patients and save health systems worldwide hundreds of millions of dollars each year.

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Zika virus damages placenta, which may explain malformed babies

January 18, 2018
Though the Zika virus is widely known for a recent outbreak that caused children to be born with microencephaly, or having a small head, and other malformations, scientists have struggled to explain how the virus affects ...

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

Study reveals how MRSA infection compromises lymphatic function

January 17, 2018
Infections of the skin or other soft tissues with the hard-to-treat MRSA (methicillin-resistant Staphylococcus aureus) bacteria appear to permanently compromise the lymphatic system, which is crucial to immune system function. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.