Fruit fly's pruning protein could be key to treating brain injury

February 27, 2014
Fruit fly's pruning protein could be key to treating brain injury
This is an artist's conception of dendrites regenerated from a fly sensory neuron after undergoing developmental pruning. Credit: Chay Kuo Lab, Duke University

A protein that controls the metamorphosis of the common fruit fly could someday play a role in reversing brain injuries, said Duke University researchers.

This protein directs both the and regrowth of the tiny branches that relay information from neuron to neuron. Known as dendrites, these thin structures that resemble tree branches are responsible for receiving that flash throughout the body.

Incorrect dendrite development or injury has been linked to neurodevelopmental or psychiatric diseases in humans, such as autism, schizophrenia and fragile X syndrome.

Under normal circumstances, neural communication is easy, much like neighbors talking over a fence. But if a neuron is injured or malformed, they frequently don't have the proper dendrites needed to be functional.

"One of the major problems with the is that it doesn't regenerate very well after injury," said Chay Kuo, M.D., Ph.D., the George W. Brumley assistant professor of cell biology, neurobiology and pediatrics. "Neurons don't multiply, so when they're injured, there's a loss of function. We'd like to know how to get it back."

While prompting such regrowth in the human brain isn't currently possible, dendrite regeneration and arborization—the branching out of dendrites from the body of the neuron—are a necessary part of the fruit fly Drosophila's life cycle. In the larval (or worm) state, the fly's nervous system is attuned to what the smooth-skinned worm needs: finding food, locomotion and avoiding attack. As an adult with bristle-covered skin however, the nervous system must be wired for flying, finding mates and laying eggs.

Until now, researchers haven't understood how Drosophila sensory neurons are able to create two separate dendrite branching patterns that successfully serve different kinds of sensory environments, said Kuo, who is also a faculty member with the Duke Institute for Brain Sciences (DIBS). His team set out to find the genetic mechanism that makes it possible. This research, funded by the Alfred P. Sloan Foundation and the George & Jean Brumley, Jr. Endowment, will appear online in the Feb. 27 issue of Cell Reports.

The answer lies in the insect's metamorphosis from larvae to adult. During this transition, Drosophila lose the neurons they won't need for adult life. The remaining sensory neurons sever their dendrites and grow a completely different set. The regeneration process, which is controlled by the hormone ecdysone, is much like pruning a tree in spring to make room for new growth, Kuo said.

To find out how the drosophila sensory neurons accomplish this change, Kuo's team tagged abdominal sensory neurons with green fluorescent protein (GFP) and followed them through metamorphosis to see if their dendrite branching changed. The dendrite design and architecture was, in fact, different in the adult stage.

A test carried out by former graduate student Gray Lyons revealed Cysteine proteinase-1 (Cp1) is responsible for regulating the regeneration of neuron dendrites and innervating the adult sensory field. Kuo's team demonstrated that without Cp1, Drosophila sensory dendrites cannot regenerate after pruning.

Existing literature also pointed Kuo's team to a parallel between the drosophila nervous system and mammals.

"We investigated whether it was possible that Cp1, during metamorphosis, shuttles from the cytoplasm into the nucleus to cleave a transcription factor required for dendrite development, and makes it a new transcription factor for regeneration," Kuo said. "And, that turned out to be true."

The mammalian version of Cp1 is a protein known to be associated with cancer progression and other diseases called lysosomal protein capthesin-L (Ctsl). During the cell cycle, Ctsl can target a transcription factor – a protein that binds specific DNA sequences – called Cut-like 1 (Cux1) that plays a role in gene expression. Ctsl pursues Cux1 inside the nucleus and cleaves it, creating a smaller protein with different transcriptional properties than the original one.

"I feel this discovery is amazing because the major transcription factor involved in how fly sensory neurons grow dendrites in the first place is Cut, and Cut-like 1 is its mammalian homologue," Kuo said. "[Lyons'] initial idea looking into mammalian conservation for answers panned out big. It was serendipity."

By tagging Cut during Drosophila metamorphosis, Kuo's team observed the protein's binding pattern within the nucleus. Before dendrite pruning, Cut binds in big blobs. After the pruning, however, Cut binding is diffused, giving it an opportunity, Kuo said, to bind to different genes during the two dendrite growth phases.

The team translated this finding back to Cp1, discovering that it goes into the neuron nucleus to cleave Cut, making a new transcription factor required for dendrite regeneration after developmental pruning.

This research could also potentially impact how science and healthcare think about and treat brain injuries, Kuo said. Currently, damaged neurons that have lost their dendrites are unable to properly communicate with their neighbors, rendering them nonfunctional. The problem could be reversed, he said, by helping neurons modify their original developmental program and regrow new .

"If we can influence this environmental control that changes the development program, it's possible that we could get neurons to integrate and function better after injury," he said.

Explore further: A new pathway for neuron repair is discovered

More information: Cell Reports, March 13, 2014. DOI: 10.1016/j.celrep.2014.02.003

Related Stories

A new pathway for neuron repair is discovered

January 9, 2014
Penn State University molecular biologists have discovered a brand-new pathway for repairing nerve cells that could have implications for faster and improved healing. The researchers describe their findings in a paper titled ...

Neuronal regeneration and the two-part design of nerves

June 4, 2013
Researchers at the University of Michigan have evidence that a single gene controls both halves of nerve cells, and their research demonstrates the need to consider that design in the development of new treatments for regeneration ...

Previously unstudied gene is essential for normal nerve development

October 10, 2013
Our ability to detect heat, touch, tickling and other sensations depends on our sensory nerves. Now, for the first time, researchers at Albert Einstein College of Medicine of Yeshiva University have identified a gene that ...

Neuroscientists discover new 'mini-neural computer' in the brain

October 27, 2013
Dendrites, the branch-like projections of neurons, were once thought to be passive wiring in the brain. But now researchers at the University of North Carolina at Chapel Hill have shown that these dendrites do more than relay ...

Researchers identify molecule that orients neurons for high definition sensing

October 31, 2013
Many animals have highly developed senses, such as vision in carnivores, touch in mice, and hearing in bats. New research from the RIKEN Brain Science Institute has uncovered a brain molecule that can explain the existence ...

Recommended for you

How a seahorse-shaped brain structure may help us recognize others

December 8, 2017
How do we recognize others? How do we know friend from foe, threat from reward? How does the brain compute the multitude of cues telling us that Susan is not Erica even though they look alike? The complexity of social interactions—human ...

Brain networks that help babies learn to walk ID'd

December 8, 2017
Scientists have identified brain networks involved in a baby's learning to walk—a discovery that eventually may help predict whether infants are at risk for autism.

Why we can't always stop what we've started

December 7, 2017
When we try to stop a body movement at the last second, perhaps to keep ourselves from stepping on what we just realized was ice, we can't always do it—and Johns Hopkins University neuroscientists have figured out why.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

Researchers launch atlas of developing human brain

December 7, 2017
The human brain has been called the most complex object in the cosmos, with 86 billion intricately interconnected neurons and an equivalent number of supportive glial cells. One of science's greatest mysteries is how an organ ...

How we learn: Mastering the features around you rather than learning about individual objects

December 7, 2017
A Dartmouth-led study on how we learn finds that humans tend to rely on learning about the features of an object, rather than on the individual object itself.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.