Human embryonic stem cells induced to spontaneously form cortical tissue

February 7, 2014
Figure 1: Human embryonic stem cells spontaneously organize into neuroepithelial tissue containing multiple zones after growing for 70 days in culture.

During development, the nervous system forms as a flat sheet called the neuroepithelium on the outer layer of the embryo. This sheet eventually folds in on itself to form a neural tube that gives rise to the brain and spinal cord—a process that involves the proliferation and migration of immature nerve cells to form the brain at one end and the spinal cord at the other. Yoshiki Sasai, Taisuke Kadoshima and colleagues from the RIKEN Center for Developmental Biology have now shown that human embryonic stem (ES) cells can spontaneously organize into the cerebral cortical tissue that forms at the front, or 'brain' end, of the developing neural tube.

Sasai and his colleagues previously developed a novel cell culture technique that involves growing ES cells in suspension, and have shown that these cells can self-organize into complex three-dimensional structures. They have already used this method to grow pieces of cerebral cortex and embryonic eyes from mouse ES cells. And more recently, they have shown that human ES cells can also organize into embryonic eyes containing retinal tissue and light-sensitive cells.

In their most recent work, Sasai's team treated human ES cells grown using their cell culture system with signaling molecules that induce the formation of nervous tissue from the outer embryonic layer. They found that the cells spontaneously organize into neuroepithelial tissue that then folds up to give a multilayered cortex (Fig. 1).

During human embryonic development, the neural tube thickens at both ends. In particular, the front end thickens dramatically as waves of cells migrate outward to form the layered and other parts of the brain. An important finding of the team's is that the front end of the neural tube appears to thicken due to the growth of radial glial fibers, which span the thickness of the tube and guide migrating cells, rather than due to the accumulation of immature cells within the tube, as previously thought.

The findings also highlight critical differences between the development of the neural tube in mice and humans. While in humans, the inner surface of the and the intermediate neuroepithelial zone underneath it contain distinct populations of neural progenitors resembling radial glia, the progenitor population in the latter is not present in the developing mouse cortex.

"Efficient generation of cortical tissues could provide a valuable resource of functional neurons and tissues for medical applications," says Kadoshima. "By combining this method with disease-specific human induced pluripotent stem , it will also be possible to reproduce complex human disorders."

Explore further: Scientists find neural stem cell regulator

More information: Kadoshima, T., Sakaguchi, H., Nakano, T., Soen, M., Ando, S., Eiraku, M. & Sasai, Y. "Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell–derived neocortex." Proceedings of the National Academy of Sciences USA 110, 20284–20289 (2013). dx.doi.org/10.1073/pnas.1315710110

Related Stories

Scientists find neural stem cell regulator

April 16, 2012
Researchers at the University of Colorado School of Medicine have found that lack of a specific gene interrupts neural tube closure, a condition that can cause death or paralysis.

Researchers generate kidney tubular cells from stem cells

December 19, 2013
Researchers have successfully coaxed stem cells to become kidney tubular cells, a significant advance toward one day using regenerative medicine, rather than dialysis and transplantation, to treat kidney failure. The findings ...

Success in growing functional pituitary gland in a lab culture will advance regenerative medicine

March 2, 2012
Embryonic stem cells grown in a laboratory culture can organize themselves into a partial pituitary gland that is fully functional when transplanted into mice, a team of researchers led by Yoshiki Sasai of the RIKEN Center ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.