A quicker, cheaper way to detect staph in the body

February 2, 2014, University of Iowa
University of Iowa researchers have created a noninvasive probe that can detect a common strain of staph bacteria in the body. The staph bacteria are located via a light-emitting molecule (green), which is released when a bacterial enzyme (in orange) slices and separates the probe (shown in blue), shown in the illustration above. Credit: McNamara lab, University of Iowa

Chances are you won't know you've got a staph infection until the test results come in, days after the symptoms first appear. But what if your physician could identify the infection much more quickly and without having to take a biopsy and ship it off for analysis?

Researchers at the University of Iowa may have found a way. The team has created a noninvasive chemical that detects a common species of staph bacteria in the body. The probe ingeniously takes advantage of staph's propensity to slash and tear at DNA, activating a beacon of sorts that lets doctors know where the bacteria are wreaking havoc.

"We've come up with a new way to detect staph bacteria that takes less time than current diagnostic approaches," says James McNamara, assistant professor in internal medicine at the UI and the corresponding author of the paper published Feb. 2 in Nature Medicine. "It builds on technology that's been around a long time, but with an important twist that allows our probe to be more specific and to last longer."

The UI-developed probe targets Staphylococcus aureus, a species of staph bacteria common in hospitals and found in the general public as well. The bacteria causes skin infections, can spread to the joints and bones and can be fatal, particularly to those with .

"Every year in the U.S., half a million people become infected by S. aureus bacteria, and 20,000 of those who become infected die," adds Frank Hernandez, a post-doctoral researcher at the UI and first author on the paper. "We believe that we are significantly improving the actual methods for detecting bacteria with a simple approach, which we expect to be cheap, fast and reliable."

What makes staph especially troublesome is doctors don't know the bacteria are in the body until they get the biopsy results, which usually takes days. "They're flying blind, so to speak," McNamara says. "It's the state of medicine at this time."

The UI team created a synthetic probe with two unique features. On one end is a molecule that gives off light under certain conditions. On the other end is another molecule that blocks that light. In other words, the particle, as designed, cancels itself out, leaving itself undetectable inside the body.

This is important due to what staph bacteria will do to the particle. In tests, nucleases (or enzymes) produced by the staph bacteria cleave the particles, like a warrior wielding a sword. (Why it does this is unclear, but scientists believe it's a clever way for staph, which can't move by itself, to spread beyond the molasses-like environment created when DNA leaks from infected, dying cells.) In any event, when staph cleaves the probe, it separates the light-emitting molecule from the light-blocking molecule, which then drifts too far away to block light. And, so with the right equipment, doctors would be able to see the light-emitting molecules and know that staph are raging there.

Outfitting such particles is not altogether new, but McNamara and his colleagues produced a probe that lasts longer—by several hours longer for certain types.

"We designed a tracking system that specifically identifies bacterial body localization in less than one hour," says Hernandez, a Colombian who for years has been working on probes to detect .

Just as important, the UI probe has been chemically modified so that it's shredded only by the staph bacteria's nuclease and not by a nuclease secreted by normal, healthy cells. The team further tested the probe in mice and human serum and report that it performed as expected.

"That's the central idea, the underlying concept of our approach," says McNamara, whose primary appointment is in the Carver College of Medicine. "If the probe gets cleaved by serum nucleases, then our probe would be lit up all over the bloodstream. But since it's split only by staph nucleases, then we can pinpoint where the are active."

The team, which applied in fall 2012 for a final U.S. patent for the probe, plans to refine the probe, so it can be detected deeper in the body and to test its performance with catheter infections, according to McNamara.

McNamara acknowledges previous research by Arthur Arnone, UI professor emeritus in biochemistry, who was the first to define the structure of the S. aureus nuclease.

Explore further: New vaccine protects against lethal pneumonia caused by staph bacteria

More information: Noninvasive imaging of Staphylococcus aureus infections with a nuclease-activated probe, DOI: 10.1038/nm.3460

Related Stories

New vaccine protects against lethal pneumonia caused by staph bacteria

December 20, 2013
University of Iowa researchers have developed a new vaccine that protects against lethal pneumonia caused by Staphylococcus aureus (staph) bacteria, including drug-resistant strains like MRSA.

Team creates first comprehensive guidelines to reduce staph bacteria infections after surgery

June 13, 2013
Staph infections in hospitals are a serious concern, so much so that the term Methicillin-resistant Staphylococcus aureus (MRSA) is as commonly known as MRI. Far less known is that in many of these cases, patients are infecting ...

Bacterial toxins cause deadly heart disease

August 20, 2013
University of Iowa researchers have discovered what causes the lethal effects of staphylococcal infective endocarditis - a serious bacterial infection of heart valves that kills approximately 20,000 Americans each year.

Bacteria and fat: A 'perfect storm' for inflammation, may promote diabetes

October 30, 2013
Making fat cells immortal might seem like a bad idea to most people, but for a team of University of Iowa scientists it was the ideal way to study how the interaction between bacteria and fat cells might contribute to diabetes.

How drug-resistant staph paralyzes immune cells

November 25, 2013
When golden staph enters our skin it can identify the key immune cells and 'nuke' our body's immune response.

Chronic exposure to staph bacteria may be risk factor for lupus, study finds

August 8, 2012
Chronic exposure to even small amounts of staph bacteria could be a risk factor for the chronic inflammatory disease lupus, Mayo Clinic research shows. Staph, short for Staphylococcus aureus, is a germ commonly found on the ...

Recommended for you

Study reveals how MRSA infection compromises lymphatic function

January 17, 2018
Infections of the skin or other soft tissues with the hard-to-treat MRSA (methicillin-resistant Staphylococcus aureus) bacteria appear to permanently compromise the lymphatic system, which is crucial to immune system function. ...

Fresh approach to tuberculosis vaccine offers better protection

January 17, 2018
A unique platform that resulted in a promising HIV vaccine has also led to a new, highly effective vaccine against tuberculosis that is moving toward testing in humans.

New study validates clotting risk factors in chronic kidney disease

January 17, 2018
In late 2017, researchers from Boston University School of Medicine (BUSM) discovered and published (Science Translational Medicine, (9) 417, Nov 2017) a potential treatment target to prevent chronic kidney disease (CKD) ...

Newly-discovered TB blood signal provides early warning for at-risk patients

January 17, 2018
Tuberculosis can be detected in people with HIV infection via a unique blood signal before symptoms appear, according to a new study by researchers from the Crick, Imperial College London and the University of Cape Town.

New study offers insights on genetic indicators of COPD risk

January 16, 2018
Researchers have discovered that genetic variations in the anatomy of the lungs could serve as indicators to help identify people who have low, but stable, lung function early in life, and those who are particularly at risk ...

Previous influenza virus exposures enhance susceptibility in another influenza pandemic

January 16, 2018
While past exposure to influenza A viruses often builds immunity to similar, and sometimes different, strains of the virus, Canadian researchers are calling for more attention to exceptions to that rule.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

betterexists
not rated yet Feb 02, 2014
This is definitely an advancement in the field of Microbiology like last week's advancement in stem cells by exposure of Blood cells to Acid etc.
Those that put obstructions to the field of Embryology in the past couple of decades should have their properties seized.
At least now there is no need to work with those so called Dumb ESCs

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.