Seizing control of brain seizures

February 20, 2014 by Wallace Ravven, University of California - Berkeley
Daniela Kaufer in the lab. Credit: Peg Skorpinski.

(Medical Xpress)—A few years after serving in the Israeli army during the first Gulf War, Daniela Kaufer made a startling discovery about the effect of psychological stress on the brain. As a graduate student at the Hebrew University she showed that the kind of extreme stress experienced in combat can break down the physiological barriers that normally protect the brain.

She could not have known it then, but the finding would eventually lead her to uncover a key change in chemistry that triggers . The Bakar Fellows Program is now helping her refine a strategy to block the threat and protect the brain from damage caused by and other insults.

A physiological line of defense normally prevents circulating blood from entering the brain. Known as the blood-brain barrier, the tightly controlled system buffers the brain from exposure to bacteria and other blood-borne invaders. Kaufer's research has revealed how can disrupt brain function once the barrier is breached.

In lab research as a postdoc at Stanford in 2002, Kaufer and her Israeli colleague Alon Friedman examined what happens in the brain when the barrier is compromised. They found that seizures were likely if – and only if – the brain came in contact with blood that had been circulating in the body.

They showed that a very common protein in blood called albumin accelerates signaling between neurons to abnormal levels. Neurons become overexcited and can cause seizures.

"We were surprised, even a little disappointed, that it was such a common component of the blood – nothing exotic at all – that led to ," recalls Kaufer, associate professor of integrative biology.

Within hours after the breakdown of the blood-brain barrier, the serum protein albumin gains access to brain cells. It binds to docking sites for the TGFBeta protein, located in neurons’ sister cells called astrocytes. This triggers changes in the astrocytes that ultimately overexcite neurons and can cause epilepsy.

She and Friedman went to on to show that albumin interacts with a ubiquitous cell protein called TGF-Beta receptor to cause the damage.

In the healthy brain, TGF-Beta signaling affects activity of star-shaped sister cells of neurons called astrocytes, which normally limit neuron-to-neuron firing signals across the synapse. But when albumin stimulates TGF-Beta receptors, astrocytes lose some of their control. Neuron signaling spikes dangerously, and promotes the development of epileptic seizures.

"Researchers knew that following the risk of epilepsy was great, but they didn't know why," Kaufer says.

As luck would have it, a prescription drug for hypertension blocks TGF-Beta signaling. With support from the Bakar Fellows program, Kaufer is now carrying out research to confirm that blocking abnormal TGF-Beta activity can prevent epilepsy from a range of insults.

She expects that her and Friedman's lab research, coupled with clinical studies, will demonstrate the drug's ability to protect the brain and move it into use in emergency medicine to prevent victims of brain trauma from becoming epileptic.

Daniela Kaufer and graduate student, David Covarrubias, in the lab. Credit: Peg Skorpinski.

Kaufer and Friedman's research is suggesting too that a number of assaults besides physical trauma – from brain infections to stroke – can also weaken the blood-brain barrier, and lead to the development of epilepsy through TGF-beta signaling. Emergency medicine physicians need only determine if the barrier has been breached to know if a patient is at risk for seizures.

Fortunately, the condition of the can be assessed using a safe and straightforward FDA-approved MRI protocol, so screening for epilepsy risk is within reach, says Kaufer.

"Right now, if someone comes to the emergency room with traumatic brain injury, they have a 10 to 50 percent chance of developing epilepsy. But you don't know which ones, nor do you have a way of preventing it. And epilepsy from brain injuries is the type most unresponsive to drugs.

"I'm very hopeful and that our research can spare these patients the added trauma of epilepsy."

Explore further: Brain study uncovers vital clue in bid to beat epilepsy

Related Stories

Brain study uncovers vital clue in bid to beat epilepsy

September 3, 2013
People with epilepsy could be helped by new research into the way a key molecule controls brain activity during a seizure.

Mild brain cooling after head injury prevents epileptic seizures in lab study

December 21, 2012
(Medical Xpress)—Mild cooling of the brain after a head injury prevents the later development of epileptic seizures, according to an animal study reported this month in the  Annals of Neurology.

Cooling may prevent trauma-induced epilepsy

February 21, 2013
(Medical Xpress)—In the weeks, months and years after a severe head injury, patients often experience epileptic seizures that are difficult to control. A new study in rats suggests that gently cooling the brain after injury ...

Adenosine therapy reduces seizures and progression of epilepsy

July 25, 2013
Epilepsy is characterized by recurrent seizures that present in many different ways. In some cases epileptic patients exhibit a progressive increase in both frequency and severity of seizures. Epigenetic changes such as DNA ...

Implantable medical device for epilepsy

December 3, 2013
(Medical Xpress)—Physicians at the University of Rochester Medical Center (URMC) Strong Epilepsy Center were involved in the recent approval of a new treatment for epilepsy. The implantable medical device – called the ...

Recommended for you

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

Preterm babies may suffer setbacks in auditory brain development, speech

January 15, 2018
Preterm babies born early in the third trimester of pregnancy are likely to experience delays in the development of the auditory cortex, a brain region essential to hearing and understanding sound, a new study reveals. Such ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.