Unusual new HIV drug resistance mechanism revealed

February 18, 2014, American Institute of Physics

For the more than one million people with HIV/AIDS in the United States (and the over 34 million people living with HIV/AIDS around the world), antiretroviral drugs such as efavirenz and other so-called non-nucleoside reverse transcriptase inhibitors (NNRTIs) in combination with other antiretrovirals can be a lifeline, because they slow the progress of viral infection, prolonging life. Unfortunately, studies have shown that these benefits themselves can be short-lived in the clinic: therapy with NNRTIs can lead to single (or "point") mutations in the HIV genetic code—mutations that make the virus resistant to the drugs.

Researchers at the University of Pittsburgh School of Medicine now have a good idea why. In work to be presented at the 58th Annual Biophysical Society Meeting, which takes place in San Francisco from Feb. 15-19, cell biologist Sanford Leuba and his colleagues offer new insight into how NNRTIs function and how therapy-induced point mutations actually confer drug resistance.

NNRTIs work by blocking the action of an enzyme called reverse transcriptase, which HIV uses to convert its own genetic material (in the form of RNA) into single-stranded copies of DNA, which can then be inserted into the genome of the human cells they've infected. Once incorporated, this DNA instructs the host to create new copies of the virus, propagating the infection to new cells and over time attacking the immune system, which can lead to full-blown AIDS.

Using a number of imaging techniques and computer modeling, Leuba and his team showed that, normally, the binding of efavirenz results in the formation of a molecule-sized "salt bridge" that holds the reverse transcriptase in an open state when it is attached to the template it uses in making DNA copies. "The reverse transcriptase can still bind the template, but it continually slides," Leuba explained, "preventing the enzyme from polymerizing nucleotides. The virus cannot replicate."

When it binds an inhibitor drug, HIV reverse transcriptase is forced into an open state that cannot transcribe RNA to DNA though a single amino acid mutation can make the protein drug resistant. Credit: G. Schauer/University of Pittsburgh

The point mutations that cause resistance to , the researchers found, prevent that salt bridge from forming, "allowing the reverse transcriptase to function normally," he says. "This type of inhibition, which does not involve drug-binding affinity, has not been described previously."

Based on the work, Leuba said, "We have ideas about how to begin designing a new generation of NNRTIs."

Explore further: Antiretroviral regimen associated with less virological failure among HIV-infected children

More information: The presentation "A Gripping New Mechanism of Drug Resistance in HIV-1 Reverse Transcriptase" by Grant Schauer, Nic Sluis-Cremer and Sanford Leuba will be at 1:45 p.m. on Tuesday, February 18, 2014 in Hall D in San Francisco's Moscone Convention Center. Abstract: tinyurl.com/km59vnu

Related Stories

Antiretroviral regimen associated with less virological failure among HIV-infected children

April 30, 2013
Elizabeth D. Lowenthal, M.D., M.S.C.E., of the University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, and colleagues conducted a study to determine whether there was a difference in ...

Drug designer: New tool reveals mutations that cause HIV-drug resistance

July 8, 2011
Protease inhibitor drugs are one of the major weapons in the fight against HIV, the virus that causes AIDS, but their effectiveness is limited as the virus mutates and develops resistance to the drugs over time. Now a new ...

New anti-HIV drug target identified

December 18, 2013
University of Minnesota researchers have discovered a first-of-its-kind series of compounds possessing anti-human immunodeficiency virus (HIV) activity. The compounds present a new target for potential HIV drug development ...

Recommended for you

HIV-1 genetic diversity is higher in vaginal tract than in blood during early infection

January 18, 2018
A first-of-its-kind study has found that the genetic diversity of human immunodeficiency virus type 1 (HIV-1) is higher in the vaginal tract than in the blood stream during early infection. This finding, published in PLOS ...

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.