Weakness exposed in most common cancer gene

February 10, 2014

NYU Langone Medical Center researchers have found a biological weakness in the workings of the most commonly mutated gene involved in human cancers, known as mutant K-Ras, which they say can be exploited by drug chemotherapies to thwart tumor growth.

Mutant K-Ras has long been suspected of being the driving force behind more than a third of all cancers, including colon, lung, and a majority of pancreatic cancers. Indeed, Ras cancers, which are unusually aggressive, are thought of as "undruggable" because every previous attempt to stall their growth has failed.

Reporting in the journal Cancer Cell online Feb. 10, researchers in the lab of NYU Langone's Dafna Bar-Sagi, PhD, led by Elda Grabocka, PhD, showed in experiments in human that K-Ras tumor growth was highly dependent on the cells' constant need to check and mend their DNA.

Cell DNA is routinely damaged by several factors, including stress or ultraviolet light radiation, and must be repaired in order for cells to grow by cell division. In cancer cells, such "wear and tear" is accelerated.

In the study, researchers discovered how a commonly used chemotherapy drug could be much more effective in killing K-Ras cancer cells when their ability to check their DNA for any damage was blocked, by cutting off the activity of two related genes, H-Ras and N-Ras.

"Our finding suggests that K-Ras cancers can be made more susceptible to existing therapies by interfering with their DNA repair mechanisms," says Dr. Bar-Sagi, senior study investigator and biochemist. "What some researchers have described as therapeutic 'mission impossible' may now become a 'mission doable'," adds Dr. Bar-Sagi, senior vice president and vice dean for science, and chief scientific officer of NYU Langone Medical Center.

Lead study investigator and cancer biologist Dr. Grabocka, a postdoctoral fellow at NYU Langone, says the latest findings are believed to be the first to show that Ras mutations are part of a network of different forms of Ras acting in concert to determine how cancer cells respond to drug chemotherapies.

The team's investigation began with experiments to unravel how Ras signaling leads to the uncontrolled growth of cancer cells. They found that blocking the production of H-Ras and N-Ras in mutant K-Ras cells caused the buildup of damaged DNA and slowed down cell growth.

Specifically, Grabocka points out, the team found that K-Ras cancer cells, in the absence of H-Ras and N-Ras, failed to stop and repair their DNA at a key phase in cell division, controlled by an enzyme called checkpoint kinase 1, or Chk1.

Using K-Ras cancer cells developed at NYU Langone, Bar-Sagi and her team then set out to test the effects of the chemotherapy drug irinotecan on .

Only when the drug was delivered in combination with the inactivation of H-Ras and N-Ras did tumor shrinkage and cell death occur.

"Discovering more about how these different forms of Ras act on one another—including how they control DNA damage repair at Chk1 in combination with chemotherapy—could help us design drugs that greatly stall disease progression," says Dr. Grabocka.

Researchers plan further experiments on the biological interdependency of Ras proteins and what other chemotherapies might be involved in slowing cancer growth. Their goal, Dr. Grabocka says, is to "map out" the Ras signaling pathways and to identify as many therapeutic drug targets as possible. "Our research is focused on finding multiple targets in K-Ras cancers, all working against what is known as its 'tumor fitness,' and weakening it so that it is as vulnerable as possible to chemotherapy," says Dr. Grabocka.

Explore further: Awakening genes that suppress tumors

Related Stories

Awakening genes that suppress tumors

October 10, 2013
(Medical Xpress)—When genes that normally suppress tumor growth are themselves suppressed, cancer cells can grow and proliferate uncontrollably. A new study led by a researcher at Yale University has uncovered the pathway ...

Blocking 'lock and key' site of lung cancer proteins could lead to new treatments

November 12, 2013
A Cancer Research UK study reveals that stopping two essential lung cancer proteins from joining together at their 'lock and key' site could lead to new treatments for the disease. The research is published in the journal ...

Renegades of cell biology: Why K-Ras gene mutations prove so deadly in cancer

December 19, 2013
Cells with a mutation in the gene called K-Ras—found in close to 30 percent of all cancers, but mostly those with worst prognosis, such as pancreatic cancer, colon cancer, and lung cancer—behave in ways that subvert the ...

Breakthrough in how pancreatic cancer cells ingest nutrients points to new drug target

May 13, 2013
In a landmark cancer study published online in Nature, researchers at NYU School of Medicine have unraveled a longstanding mystery about how pancreatic tumor cells feed themselves, opening up new therapeutic possibilities ...

Researchers develop compound to block signaling of cancer-causing protein

July 17, 2011
Researchers at New York University's Department of Chemistry and NYU Langone Medical Center have developed a compound that blocks signaling from a protein implicated in many types of cancer. The compound is described in the ...

New type of molecular switch could turn up the volume on bowel cancer treatment

November 5, 2012
(Medical Xpress)—A new type of molecular switch can boost common chemotherapy drugs to destroy bowel cancer cells, according to research presented today (Monday) at the NCRI Cancer Conference in Liverpool.

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.