Administration of specific micro-RNAs can retard the development of atherosclerosis

March 6, 2014, Ludwig Maximilian University of Munich

(Medical Xpress)—LMU medical researchers have shown that the administration of specific micro-RNAs can retard the development of atherosclerosis.

Atherosclerosis is a serious condition in which fatty deposits build up in the inner layer of the major arteries, provoking chronic inflammatory reactions that lead to a progressive obstruction of the vessels. This may ultimately cut off blood-flow and lead to a heart attack or a stroke.

Atherosclerosis develops primarily at sites in the arterial vasculature, at which the that form the inner lining of the all blood vessels are particularly susceptible to damage. "Where blood-flow is perturbed and other risk factors are present, such as hyperlipidemia with abnormally high levels of cholesterol, the cells of the mount a stress reaction, which can result in but also in increased proliferation of endothelial cells," explains LMU's Professor Christian Weber, Director of the Institute for Cardiovascular Prevention at the LMU Medical Center. The significance of this increased cell turnover for the regeneration of the endothelium and the development of atherosclerosis has, however, remained unclear.

A research team led by Weber and Professor Andreas Schober has now elucidated the role of two microRNAs called miR-126-3p and miR-126-5p in the process, and their findings are reported in the latest issue of Nature Medicine.

MicroRNAs are short strands of the eponymous nucleic acid – which is structurally related to the DNA in which the cell's hereditary information is stored – and they play important roles in the regulation of gene activity. miR-126-5p and miR-126-3p are complementary sister strands that are derived from the same precursor hairpin RNA. "We have now shown, for the first time, that the repair of the endothelium after injury, and the regenerative proliferation of endothelial cells, is induced by miR-126-5p, which specifically inhibits production of the protein Dlk1 (Delta-like 1)," says Andreas Schober. In the absence of miR-126-5p, deposits also accumulate at sites in the vascular system where potentially proliferative endothelial cells are normally held in reserve to compensate for any damage that may occur. In a mouse model system, the researchers then demonstrated that administration of miR-126-5p was capable of preventing the development of athersclerotic lesions. "As soon as the levels of miR-126-5p are increased, the proliferative reserve of endothelial is restored, which protects the animals against atherosclerosis," says Schober.

Delivery by nanoparticles

The results of the study are highly relevant for future approaches to the treatment of atherosclerosis. Both synthetic inhibitors and functional mimics of micro-RNAs are available, which can be administered by injection. "Our data suggest that the therapeutic application of miR-126-5p mimics holds promise for the treatment of patients," says Christian Weber. In their studies in mouse, he and his team have already tried out a new mode of administering these agents, in which a nanoparticle-based packaging system is used to deliver miR-126-5p to the affected tissue.

"In view of the protective effects of miR-126-3p, it might even be worthwhile to use a combination of the two strands," Weber adds, and he is currently engaged in testing this strategy. The therapeutic procedure already devised is the subject of a patent application, and its further development is underway at the German Center for Cardiovascular Research, in collaboration with interested biotechnology firms.

Explore further: Atherosclerosis: Specific microRNAs promote inflammation

More information: "MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1." Andreas Schober, et al. Nature Medicine (2014) DOI: 10.1038/nm.3487. Received 11 November 2013 Accepted 29 January 2014 Published online 02 March 2014

Related Stories

Atherosclerosis: Specific microRNAs promote inflammation

March 22, 2013
(Medical Xpress)—Atherosclerosis, an inflammatory reaction, is at the root of the most common forms of cardiovascular disease. Researchers at Ludwig-Maximilians-Universitaet in Munich have now identified a microRNA that ...

Circulating MicroRNAs linked to type 2 diabetes

February 7, 2014
(HealthDay)—Circulating microRNAs (miRNAs) are associated with type 2 diabetes (T2D), and their levels vary with insulin action, according to a study published online Jan. 29 in Diabetes Care.

Going against the flow: Halting atherosclerosis by targeting micro RNA

December 18, 2013
Researchers at Emory and Georgia Tech have developed a potential treatment for atherosclerosis that targets a master controller of the process.

The Janus-like nature of JAM-A

September 30, 2013
A new study by Ludwig-Maximilians-Universitaet (LMU) in Munich researchers led by Christian Weber sheds light on the role of the adhesion molecule JAM-A in the recruitment of immune cells to the inner layer of arteries – ...

In cancer, molecular signals that recruit blood vessels also trigger metastasis

December 19, 2011
(Medical Xpress) -- Cancer cells are most deadly when they’re on the move — able not only to destroy whatever organ they are first formed in, but also to create colonies elsewhere in the body. New research has now ...

Recommended for you

A nanoparticle inhalant for treating heart disease

January 18, 2018
A team of researchers from Italy and Germany has developed a nanoparticle inhalant for treating people suffering from heart disease. In their paper published in the journal Science Translational Medicine, the group describes ...

Starting periods before age of 12 linked to heightened risk of heart disease and stroke

January 15, 2018
Starting periods early—before the age of 12—is linked to a heightened risk of heart disease and stroke in later life, suggests an analysis of data from the UK Biobank study, published online in the journal Heart.

'Decorated' stem cells could offer targeted heart repair

January 10, 2018
Although cardiac stem cell therapy is a promising treatment for heart attack patients, directing the cells to the site of an injury - and getting them to stay there - remains challenging. In a new pilot study using an animal ...

Two simple tests could help to pinpoint cause of stroke

January 10, 2018
Detecting the cause of the deadliest form of stroke could be improved by a simple blood test added alongside a routine brain scan, research suggests.

Exercise is good for the heart, high blood pressure is bad—researchers find out why

January 10, 2018
When the heart is put under stress during exercise, it is considered healthy. Yet stress due to high blood pressure is bad for the heart. Why? And is this always the case? Researchers of the German Centre for Cardiovascular ...

Heart-muscle patches made with human cells improve heart attack recovery

January 10, 2018
Large, human cardiac-muscle patches created in the lab have been tested, for the first time, on large animals in a heart attack model. This clinically relevant approach showed that the patches significantly improved recovery ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.