Study of antibody evolution charts course toward HIV vaccine

March 2, 2014
This is a representation of an image taken with an electron microscope of one of the numerous spikes that jut out of the surface of HIV. The green area marks the location of the V1V2 region, where CAP256-VRC26 and other broadly neutralizing HIV antibodies bind. The blue, red and circled areas mark the three other sites where most known broadly neutralizing HIV antibodies bind. The flat area at the top represents the surface membrane of the virus. Credit: NIAID

In an advance for HIV vaccine research, a scientific team has discovered how the immune system makes a powerful antibody that blocks HIV infection of cells by targeting a site on the virus called V1V2. Many researchers believe that if a vaccine could elicit potent antibodies to a specific conserved site in the V1V2 region, one of a handful of sites that remains constant on the fast-mutating virus, then the vaccine could protect people from HIV infection. Analyses of the results of a clinical trial of the only experimental HIV vaccine to date to have modest success in people suggest that antibodies to sites within V1V2 were protective. The new findings point the way toward a potentially more effective vaccine that would generate V1V2-directed HIV neutralizing antibodies.

The study was led by scientists from the National Institute of Allergy and Infectious Diseases (NIAID), part of the U.S. National Institutes of Health; Columbia University; the Centre for the AIDS Programme of Research in South Africa (CAPRISA); and the National Institute for Communicable Diseases, Johannesburg.

They began by identifying an HIV-infected volunteer in the CAPRISA cohort who naturally developed V1V2-directed HIV neutralizing antibodies, named CAP256-VRC26, after several months of infection. Using techniques similar to those employed in an earlier study of HIV-antibody co-evolution, the researchers analyzed blood samples donated by the volunteer between 15 weeks and 4 years after becoming infected. This enabled the scientists to determine the genetic make-up of the original form of the antibody; to identify and define the structures of a number of the intermediate forms taken as the antibody mutated toward its fullest breadth and potency; and to describe the interplay between virus and antibody that fostered the maturation of CAP256-VRC26 to its final, most powerful HIV-fighting form.

Notably, the study revealed that after relatively few mutations, even the early intermediates of CAP256-VRC26 can neutralize a significant proportion of known HIV strains. This improves the chances that a V1V2-directed HIV vaccine developed based on the new findings would be effective, according to the scientists, who have begun work on a set of components designed to elicit V1V2 and guide their maturation.

Explore further: Durable end to AIDS will require HIV vaccine development

More information: Nature DOI: 10.1038/nature13036

Related Stories

Durable end to AIDS will require HIV vaccine development

February 5, 2014
Broader global access to lifesaving antiretroviral therapies and wider implementation of proven HIV prevention strategies could potentially control and perhaps end the HIV/AIDS pandemic. However, a safe and at least moderately ...

HIV vaccines elicit immune response in infants

October 8, 2013
A new analysis of two HIV vaccine trials that involved pediatric patients shows that the investigational vaccines stimulated a critical immune response in infants born to HIV-infected mothers, researchers at Duke Medicine ...

Researchers use antibody treatment to protect humanized mice from HIV

February 11, 2014
NIH-funded scientists have shown that boosting the production of certain broadly neutralizing antibodies can protect humanized mice from both intravenous and vaginal infection with HIV. Humanized mice have immune systems ...

Scientists find mechanism that helps HIV evade antibodies, stabilize key proteins

February 3, 2014
NIH scientists have discovered a mechanism involved in stabilizing key HIV proteins and thereby concealing sites where some of the most powerful HIV neutralizing antibodies bind, findings with potential implications for HIV ...

Possible clues found to why HIV vaccine showed modest protection

April 4, 2012
Insights into how the first vaccine ever reported to modestly prevent HIV infection in people might have worked were published online today in the New England Journal of Medicine. Scientists have found that among adults who ...

Researchers determine how antibody recognizes key sugars on HIV surface

November 23, 2011
HIV is coated in sugars that usually hide the virus from the immune system. Newly published research reveals how one broadly neutralizing HIV antibody actually uses part of the sugary cloak to help bind to the virus. The ...

Recommended for you

Study suggests a way to stop HIV in its tracks

December 1, 2017
When HIV-1 infects an immune cell, the virus travels to the nucleus so quickly there's not enough time to set off the cell's alarm system.

Discovery puts the brakes on HIV's ability to infect

November 30, 2017
Viewed with a microscope, the virus faintly resembles a pineapple—the universal symbol of welcome. But HIV, the virus that causes AIDS, is anything but that. It has claimed the lives of more than 35 million people so far.

Rising levels of HIV drug resistance

November 30, 2017
HIV drug resistance is approaching and exceeding 10% in people living with HIV who are about to initiate or reinitiate first-line antiretroviral therapy, according to the largest meta-analysis to date on HIV drug resistance, ...

Male circumcision and antiviral drugs appear to sharply reduce HIV infection rate

November 29, 2017
A steep drop in the local incidence of new HIV infections accompanied the rollout of a U.S.-funded anti-HIV program in a large East-African population, according to a study led by researchers at Johns Hopkins Bloomberg School ...

Combination HIV prevention reduces new infections by 42 percent in Ugandan district

November 29, 2017
A study published today in the New England Journal of Medicine provides real-world evidence that implementing a combination of proven HIV prevention measures across communities can substantially reduce new HIV infections ...

Research on HIV viral load urges updates to WHO therapy guidelines

November 24, 2017
A large cohort study in South Africa has revealed that that low-level viraemia (LLV) in HIV-positive patients who are receiving antiretroviral treatment (ART) is an important risk factor for treatment failure.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.