Study of antibody evolution charts course toward HIV vaccine

March 2, 2014, NIH/National Institute of Allergy and Infectious Diseases
This is a representation of an image taken with an electron microscope of one of the numerous spikes that jut out of the surface of HIV. The green area marks the location of the V1V2 region, where CAP256-VRC26 and other broadly neutralizing HIV antibodies bind. The blue, red and circled areas mark the three other sites where most known broadly neutralizing HIV antibodies bind. The flat area at the top represents the surface membrane of the virus. Credit: NIAID

In an advance for HIV vaccine research, a scientific team has discovered how the immune system makes a powerful antibody that blocks HIV infection of cells by targeting a site on the virus called V1V2. Many researchers believe that if a vaccine could elicit potent antibodies to a specific conserved site in the V1V2 region, one of a handful of sites that remains constant on the fast-mutating virus, then the vaccine could protect people from HIV infection. Analyses of the results of a clinical trial of the only experimental HIV vaccine to date to have modest success in people suggest that antibodies to sites within V1V2 were protective. The new findings point the way toward a potentially more effective vaccine that would generate V1V2-directed HIV neutralizing antibodies.

The study was led by scientists from the National Institute of Allergy and Infectious Diseases (NIAID), part of the U.S. National Institutes of Health; Columbia University; the Centre for the AIDS Programme of Research in South Africa (CAPRISA); and the National Institute for Communicable Diseases, Johannesburg.

They began by identifying an HIV-infected volunteer in the CAPRISA cohort who naturally developed V1V2-directed HIV neutralizing antibodies, named CAP256-VRC26, after several months of infection. Using techniques similar to those employed in an earlier study of HIV-antibody co-evolution, the researchers analyzed blood samples donated by the volunteer between 15 weeks and 4 years after becoming infected. This enabled the scientists to determine the genetic make-up of the original form of the antibody; to identify and define the structures of a number of the intermediate forms taken as the antibody mutated toward its fullest breadth and potency; and to describe the interplay between virus and antibody that fostered the maturation of CAP256-VRC26 to its final, most powerful HIV-fighting form.

Notably, the study revealed that after relatively few mutations, even the early intermediates of CAP256-VRC26 can neutralize a significant proportion of known HIV strains. This improves the chances that a V1V2-directed HIV vaccine developed based on the new findings would be effective, according to the scientists, who have begun work on a set of components designed to elicit V1V2 and guide their maturation.

Explore further: Durable end to AIDS will require HIV vaccine development

More information: Nature DOI: 10.1038/nature13036

Related Stories

Durable end to AIDS will require HIV vaccine development

February 5, 2014
Broader global access to lifesaving antiretroviral therapies and wider implementation of proven HIV prevention strategies could potentially control and perhaps end the HIV/AIDS pandemic. However, a safe and at least moderately ...

HIV vaccines elicit immune response in infants

October 8, 2013
A new analysis of two HIV vaccine trials that involved pediatric patients shows that the investigational vaccines stimulated a critical immune response in infants born to HIV-infected mothers, researchers at Duke Medicine ...

Researchers use antibody treatment to protect humanized mice from HIV

February 11, 2014
NIH-funded scientists have shown that boosting the production of certain broadly neutralizing antibodies can protect humanized mice from both intravenous and vaginal infection with HIV. Humanized mice have immune systems ...

Scientists find mechanism that helps HIV evade antibodies, stabilize key proteins

February 3, 2014
NIH scientists have discovered a mechanism involved in stabilizing key HIV proteins and thereby concealing sites where some of the most powerful HIV neutralizing antibodies bind, findings with potential implications for HIV ...

Possible clues found to why HIV vaccine showed modest protection

April 4, 2012
Insights into how the first vaccine ever reported to modestly prevent HIV infection in people might have worked were published online today in the New England Journal of Medicine. Scientists have found that among adults who ...

Researchers determine how antibody recognizes key sugars on HIV surface

November 23, 2011
HIV is coated in sugars that usually hide the virus from the immune system. Newly published research reveals how one broadly neutralizing HIV antibody actually uses part of the sugary cloak to help bind to the virus. The ...

Recommended for you

HIV-1 genetic diversity is higher in vaginal tract than in blood during early infection

January 18, 2018
A first-of-its-kind study has found that the genetic diversity of human immunodeficiency virus type 1 (HIV-1) is higher in the vaginal tract than in the blood stream during early infection. This finding, published in PLOS ...

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.