Cholesterol study suggests new diagnostic, treatment approach for prostate cancer

March 4, 2014 by Emil Venere, Purdue University
Researchers have discovered a link between prostate cancer aggressiveness and a compound called cholesteryl ester accumulated in lipid droplets inside single cancer cells. This image shows liver metastasis of human prostate cancer, taken using a technique called stimulated Raman scattering microscopy. The bright dots represent intracellular lipid droplets enriched in cholesteryl ester. Credit: Purdue University

Researchers have discovered a link between prostate cancer aggressiveness and the accumulation of a compound produced when cholesterol is metabolized in cells, findings that could bring new diagnostic and treatment methods. Findings also suggest that a class of drugs previously developed to treat atherosclerosis might be repurposed for treatment of advanced prostate cancer.

The research showed depletion of the compound cholesteryl ester significantly reduced cell proliferation, impaired its ability to invade a laboratory tissue culture and suppressed tumor growth in mice.

"Our study provides an avenue towards diagnosis of aggressive prostate cancer. Moreover, we showed that depleting cholesteryl ester significantly impairs prostate cancer aggressiveness," said Ji-Xin Cheng, a professor in Purdue University's Weldon School of Biomedical Engineering and Department of Chemistry.

The research involved analysis of clinical samples harvested from prostate cancer patients, specialized cell lines and mice.

Findings are detailed in a research paper appearing Tuesday (March 4) in the journal Cell Metabolism. The paper was authored by researchers associated with Purdue's Center for Cancer Research and the Indiana University Melvin and Bren Simon Cancer Center at Indiana University School of Medicine.

"Prostate cancer is the second-leading cause of cancer-related mortality in American men. Our finding offers a biological foundation that supports the beneficial effect of cholesterol-lowering drugs. Second, our study heralds the potential of using cholesteryl ester as a therapeutic target for advanced prostate cancer," said study co-author Timothy Ratliff, the Robert Wallace Miller Director of Purdue's Center for Cancer Research. "These results together suggest that cholesteryl ester accumulation might be used for more accurate prediction of prostate cancer aggressiveness, if validated through further examination of a large number of tissue biopsies and correlation assessment of cholesteryl ester levels and clinical outcomes of patients."

A critical focus of the research is the analysis of individual inside single cells. Purdue researchers have developed an analytical tool called Raman spectromicroscopy that allows compositional analysis of single lipid droplets in living cells and mice.

"It is conceivable that cancer cells require reservoirs for lipids, namely lipid droplets. However, our imaging data revealed an unexpected, aberrant accumulation of esterified cholesterol in lipid droplets of high-grade prostate cancer and metastases," Cheng said.

The researchers learned that cholesteryl ester accumulation, which occurs only in advanced prostate cancer and its metastasis, results from the loss of a tumor-suppressing gene called PTEN and the activation of an intracellular metabolic pathway promoting tumor growth.

"These findings improve current understanding of the role of cholesterol in cancer and also suggest new opportunities for the diagnosis and treatment of aggressive prostate cancer. We have been pleased to be able to collaborate with Dr. Cheng on his important research" said Michael Koch, John P. Donohue Professor of Urology and chair of the Department of Urology at IU School of Medicine.

Findings show the drugs avasimibe and Sandoz 58-035 reduced the accumulation of cholesteryl ester and significantly hindered advanced prostate cancer growth in laboratory cell cultures and xenograft mouse models. These drugs did not show toxicity to animals.

"We note that avasimibe, Sandoz 58-035 and a class of similar drugs were developed to treat atherosclerosis, but the clinical trials were halted due to the lack of effectiveness in reducing plaque size," Cheng said. "The present study highlights a novel use of these drugs to treat advanced prostate cancer."

Explore further: Study identifies a key cellular pathway in prostate cancer

More information: Cholesteryl Ester Accumulation Induced by PTEN Loss and PI3K/AKT Activation Underlies Human Prostate Cancer Aggressiveness, Cell Metabolism.

Abstract
Altered lipid metabolism is increasingly recognized as a signature of cancer cells. Enabled by label-free Raman spectromicroscopy, we performed quantitative analysis of lipogenesis at single cell level in human patient cancerous tissues. Our imaging data revealed an unexpected, aberrant accumulation of esterified cholesterol in lipid droplets of high-grade prostate cancer and metastases. Biochemical study showed that such cholesteryl ester accumulation was a consequence of loss of tumor suppressor PTEN and subsequent activation of PI3K/AKT pathway in prostate cancer cells. Furthermore, we found that such accumulation arose from significantly enhanced uptake of exogenous lipoproteins and required cholesterol esterification. Depletion of cholesteryl ester storage significantly reduced cancer proliferation, impaired cancer invasion capability, and suppressed tumor growth in mouse xenograft models with negligible toxicity. These findings open opportunities for diagnosing and treating prostate cancer by targeting the altered cholesterol metabolism.

Related Stories

Study identifies a key cellular pathway in prostate cancer

February 10, 2014
Mayo Clinic researchers have shed light on a new mechanism by which prostate cancer develops in men. Central to development of nearly all prostate cancer cases are malfunctions in the androgen receptor—the cellular component ...

Study highlights possible new approach to prostate cancer treatment

August 1, 2013
A study in the Journal of Biological Chemistry identifies a new therapeutic approach to treat prostate cancer.

Taking cholesterol-lowering drugs may also reduce the risk of dying from prostate cancer, study finds

May 2, 2013
Men with prostate cancer who take cholesterol-lowering drugs called statins are significantly less likely to die from their cancer than men who don't take such medication, according to study led by researchers at Fred Hutchinson ...

Study finds robotic-assisted prostate surgery offers better cancer control

February 28, 2014
An observational study from UCLA's Jonsson Comprehensive Cancer Center has found that prostate cancer patients who undergo robotic-assisted prostate surgery have fewer instances of cancer cells at the edge of their surgical ...

Researchers advance findings on key gene related to cancer metastasis

February 4, 2014
(Medical Xpress)—New evidence reported by researchers at Roswell Park Cancer Institute (RPCI) lends support to the hypothesis that the SSeCKS/AKAP12 gene is a key inhibitor of prostate cancer metastasis. The data are some ...

Recommended for you

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

Workouts may boost life span after breast cancer

January 22, 2018
(HealthDay)—Longer survival after breast cancer may be as simple as staying fit, new research shows.

Cancer patients who tell their life story find more peace, less depression

January 22, 2018
Fifteen years ago, University of Wisconsin–Madison researcher Meg Wise began interviewing cancer patients nearing the end of life about how they were living with their diagnosis. She was surprised to find that many asked ...

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.