Drugs fail to reawaken dormant HIV infection

March 23, 2014, Johns Hopkins University School of Medicine
Scanning electron micrograph of an HIV-infected H9 T cell. Credit: NIAID

Scientists at Johns Hopkins report that compounds they hoped would "wake up" dormant reservoirs of HIV inside immune system T cells—a strategy designed to reverse latency and make the cells vulnerable to destruction—have failed to do so in laboratory tests of such white blood cells taken directly from patients infected with HIV.

"Despite our high hopes, none of the compounds we tested in HIV-infected cells taken directly from patients activated the latent virus," says Robert F. Siliciano, M.D., Ph.D., a professor of medicine at the Johns Hopkins University School of Medicine and a Howard Hughes Medical Institute investigator.

Siliciano is senior author of a report on the disappointing results published online March 23 in Nature Medicine.

The failure challenges the idea that a single so-called latency-reversing agent can uncover the HIV hiding out in the cells of patients whose viral load is essentially undetectable with blood tests.

While inactive, the dormant HIV lurks in the cells but does not replicate in the amounts needed to produce proteins that can be recognized by the . Without that recognition, the immune system cannot eliminate the last remaining HIV from the body. Current treatment with antiretroviral drug regimens known as HAART (highly active antiretroviral therapy) does not target the dormant HIV.

Studies have long demonstrated that these tiny reservoirs can be rekindled if a patient stops taking medication, a phenomenon that has proven to be the major barrier to a cure.

Laboratory models of latent HIV-infected cells suggested that certain compounds, mostly a group of drugs called HDAC inhibitors, might reverse the latency and awaken the infected cells just enough to make them vulnerable to eradication, Siliciano says. These inhibitors affect the genetic operation of viruses and have also been used in drugs that treat cancer and some neurological disorders.

The strategy depends on reactivating the very few remaining HIV reservoirs while HAART is in use, so that the infected cells will be eliminated while HAART prevents any new cells from becoming infected. The dormant virus is found in roughly one of every million white in someone with HIV. If all of the cells with latent HIV can be eliminated, Siliciano says, drug therapy can be safely stopped and the infection essentially cured.

Because cells with latent HIV are so rare and difficult to retrieve from infected people, researchers have used engineered latent HIV cell models to test HDAC inhibitors in the past, says study co-author Janet D. Siliciano, Ph.D., an associate professor of medicine at the Johns Hopkins University School of Medicine. Typical models have used white blood cells infected with HIV in a test tube that are then cultured until the virus becomes latent. Studies with HDAC inhibitors in these models worked very well.

For their new study, the Johns Hopkins team used a process called leukapheresis, in which a patient with HIV is hooked to a machine that removes blood and separates out the red and , returning only the to the body. By this method, the team collected a large enough sample of lymphocytes with latent HIV reservoirs to test the HDAC inhibitors on actual cells.

The goal of the new study was to compare various latency-reversing agents against one another on these patient-derived cells to see which one was best at turning on the virus, says Greg Laird, a Ph.D. candidate at Johns Hopkins and also a study co-author. "The surprise was that none of them actually worked," he says.

HDAC inhibitors were the major class of the latency-reversing agents studied by the Johns Hopkins team. HDAC proteins repress the production of RNA, a key step in taking the DNA's blueprint and using it to create, in this case, the viral protein that comprises the business end of the virus and spurs its growth.

Despite the failure of HDAC inhibitors and other compounds in their study, Laird and another principal author, Korin Bullen, also a Johns Hopkins Ph.D. candidate, say the experiments led them to develop more sensitive assays to test for reactivation of the virus.

They also created a yardstick by which to judge future successes with perhaps other compounds or combinations of therapies: If a T cell is activated in an HIV-infected person, that cell produces virus at the maximum level, essentially the equivalent of a 100-fold increase in viral RNA production. Most of the drugs studied created a one- or two-fold increase; one resulted in a six- to 10-fold increase.

The next step, the researchers say, is to study some of the drugs in combination using patient-derived cells, in hopes that the sum is greater than the parts.

Explore further: Vaccination strategy may hold key to ridding HIV infection from immune system

More information: New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo, DOI: 10.1038/nm.3489

Related Stories

Vaccination strategy may hold key to ridding HIV infection from immune system

March 8, 2012
Using human immune system cells in the lab, AIDS experts at Johns Hopkins have figured out a way to kill off latent forms of HIV that hide in infected T cells long after antiretroviral therapy has successfully stalled viral ...

New research shows promise for possible HIV cure

December 3, 2013
Researchers have used radioimmunotherapy (RIT) to destroy remaining human immunodeficiency virus (HIV)-infected cells in the blood samples of patients treated with antiretroviral therapy, offering the promise of a strategy ...

Scientists begin potential HIV cure trials

November 27, 2013
Scientists and clinicians from five leading UK universities, including King's College London, will begin a groundbreaking trial next year to test a possible cure for HIV infection.

Drug helps purge hidden HIV virus, study shows

March 8, 2012
A team of researchers at the University of North Carolina at Chapel Hill have successfully flushed latent HIV infection from hiding, with a drug used to treat certain types of lymphoma.

Cancer drug shows promise in eradicating latent HIV infection

November 29, 2012
Breakthrough drugs have made it possible for people to live with HIV longer than ever before, but more work must be done to actually cure the disease. One of the challenges researchers face involves fully eradicating the ...

Protease inhibitor resistance involves multiple stages of the HIV-1 life cycle

August 27, 2013
HIV-1 protease inhibitors are very effective antiviral drugs. These drugs target HIV-1 proteases, which are required for viral replication. Despite the success of protease inhibitors for suppressing HIV-1, some patients do ...

Recommended for you

Researchers find latent HIV reservoirs inherently resistant to elimination by CD8+ T-cells

January 22, 2018
The latest "kick-and-kill" research to eliminate the HIV virus uncovered a potential obstacle in finding a cure. A recent study by researchers at the George Washington University (GW) found that latent HIV reservoirs show ...

HIV-1 genetic diversity is higher in vaginal tract than in blood during early infection

January 18, 2018
A first-of-its-kind study has found that the genetic diversity of human immunodeficiency virus type 1 (HIV-1) is higher in the vaginal tract than in the blood stream during early infection. This finding, published in PLOS ...

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Mar 23, 2014
Disappointed. But, it is an approach that could open up treatment for a dozen 'lurker' viruses. Better luck next time, guys !

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.