Electric 'thinking cap' controls learning speed

March 23, 2014

Robert Reinhart applies the electrical stimulus to subject Laura McClenahan. After 20 minutes the headband is removed and the EEG cap will capture readings of her brain as she executes the learning task. Credit: John Russell / Vanderbilt University
(Medical Xpress)—Caffeine-fueled cram sessions are routine occurrences on any college campus. But what if there was a better, safer way to learn new or difficult material more quickly? What if "thinking caps" were real?

In a new study published in the Journal of Neuroscience, Vanderbilt psychologists Robert Reinhart, a Ph.D. candidate, and Geoffrey Woodman, assistant professor of psychology, show that it is possible to selectively manipulate our ability to learn through the application of a mild to the , and that this effect can be enhanced or depressed depending on the direction of the current.

The medial-frontal cortex is believed to be the part of the brain responsible for the instinctive "Oops!" response we have when we make a mistake. Previous studies have shown that a spike of negative voltage originates from this area of the brain milliseconds after a person makes a mistake, but not why. Reinhart and Woodman wanted to test the idea that this activity influences learning because it allows the brain to learn from our mistakes. "And that's what we set out to test: What is the actual function of these brainwaves?" Reinhart said. "We wanted to reach into your brain and causally control your inner critic."

Reinhart and Woodman set out to test several hypotheses: One, they wanted to establish that it is possible to control the brain's electrophysiological response to mistakes, and two, that its effect could be intentionally regulated up or down depending on the direction of an electrical current applied to it. This bi-directionality had been observed before in animal studies, but not in humans. Additionally, the researchers set out to see how long the effect lasted and whether the results could be generalized to other tasks.

Stimulating the brain

Using an elastic headband that secured two electrodes conducted by saline-soaked sponges to the cheek and the crown of the head, the researchers applied 20 minutes of (tDCS) to each subject. In tDCS, a very mild direct current travels from the anodal electrode, through the skin, muscle, bones and brain, and out through the corresponding cathodal electrode to complete the circuit. "It's one of the safest ways to noninvasively stimulate the brain," Reinhart said. The current is so gentle that subjects reported only a few seconds of tingling or itching at the beginning of each stimulation session.

In each of three sessions, subjects were randomly given either an anodal (current traveling from the electrode on the crown of the head to the one on the cheek), cathodal (current traveling from cheek to crown) or a sham condition that replicated the physical tingling sensation under the electrodes without affecting the brain. The subjects were unable to tell the difference between the three conditions.

The learning task
After 20 minutes of stimulation, subjects were given a learning task that involved figuring out by trial and error which buttons on a game controller corresponded to specific colors displayed on a monitor. The task was made more complicated by occasionally displaying a signal for the subject not to respond—sort of like a reverse "Simon Says." For even more difficulty, they had less than a second to respond correctly, providing many opportunities to make errors—and, therefore, many opportunities for the medial-frontal cortex to fire.

The researchers measured the of each participant. This allowed them to watch as the brain changed at the very moment participants were making mistakes, and most importantly, allowed them to determine how these brain activities changed under the influence of electrical stimulation.

Controlling the inner critic

When anodal current was applied, the spike was almost twice as large on average and was significantly higher in a majority of the individuals tested (about 75 percent of all subjects across four experiments). This was reflected in their behavior; they made fewer errors and learned from their mistakes more quickly than they did after the sham stimulus. When cathodal current was applied, the researchers observed the opposite result: The spike was significantly smaller, and the subjects made more errors and took longer to learn the task. "So when we up-regulate that process, we can make you more cautious, less error-prone, more adaptable to new or changing situations—which is pretty extraordinary," Reinhart said.

The effect was not noticeable to the subjects—their error rates only varied about 4 percent either way, and the behavioral adjustments adjusted by a matter of only 20 milliseconds—but they were plain to see on the EEG. "This success rate is far better than that observed in studies of pharmaceuticals or other types of psychological therapy," said Woodman.

The researchers found that the effects of a 20-minute stimulation did transfer to other tasks and lasted about five hours.

The implications of the findings extend beyond the potential to improve learning. It may also have clinical benefits in the treatment of conditions like schizophrenia and ADHD, which are associated with performance-monitoring deficits.

Explore further: Electrical stimulation to the brain makes learning easier

More information: Paper: www.jneurosci.org/content/34/12/4214.full

Related Stories

Electrical stimulation to the brain makes learning easier

September 21, 2011
(Medical Xpress) -- A new study presented at the British Science Festival by Professor Heidi Johansen-Berg from the University of Oxford shows that the application of small electrical currents to specific parts of the brain ...

Study of brain activity in monkeys shows how the brain processes mistakes made by others

January 11, 2013
Humans and other animals learn by making mistakes. They can also learn from observing the mistakes of others. The brain processes self-generated errors in a region called the medial frontal cortex (MFC) but little is known ...

Mechanism behind the activation of dormant memory cells discovered

February 20, 2014
The electrical stimulation of the hippocampus in in-vivo experiments activates precisely the same receptor complexes as learning or memory recall. This has been discovered for the first time and the finding has now been published ...

Ever-so-slight delay improves decision-making accuracy

March 7, 2014
Columbia University Medical Center (CUMC) researchers have found that decision-making accuracy can be improved by postponing the onset of a decision by a mere fraction of a second. The results could further our understanding ...

Recommended for you

How returning to a prior context briefly heightens memory recall

December 11, 2018
Whether it's the pleasant experience of returning to one's childhood home over the holidays or the unease of revisiting a site that proved unpleasant, we often find that when we return to a context where an episode first ...

The importins of anxiety

December 11, 2018
According to some estimates, up to one in three people around the world may experience severe anxiety in their lifetime. In a study described today in Cell Reports, researchers at the Weizmann Institute of Science have revealed ...

Neurons in the brain work as a team to guide movement of arms, hands

December 11, 2018
The apparent simplicity of picking up a cup of coffee or turning a doorknob belies the complex sequence of calculations and processes that the brain must undergo to identify the location of an item in space, move the arm ...

The richer the reward, the faster you'll likely move to reach it, study shows

December 11, 2018
If you are wondering how long you personally are willing to stand in line to buy that hot new holiday gift, scientists at Johns Hopkins Medicine say the answer may be found in the biological rules governing how animals typically ...

Using neurofeedback to prevent PTSD in soldiers

December 11, 2018
A team of researchers from Israel, the U.S. and the U.K. has found that using neurofeedback could prevent soldiers from experiencing PTSD after engaging in emotionally difficult situations. In their paper published in the ...

Study: Age, race differences determine risk of stroke in women and men

December 11, 2018
A new study found that, between the ages of 45 and 74 years, white women were less likely to have a stroke than white men, but at age 75 and older, there was no difference in stroke risk between white women and men. In contrast, ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

210
not rated yet Mar 23, 2014
Indeed: Hey check it out here, a map to help refresh ones memory regarding brain functionality: http://freethinke...ism.html

I would also hypothesize that whereas this 'Thinking Cap' helped rote learning, it might be useful as well or even a greater extent if coupled with actual physical stimulus - a chore, a task, or in attempts to recall forgotten data. Of course a healthy mind is assumed.

Oops, just saw this as I was writing my comment...an article right above this comment section: Brain stimulation improves dexterity Oct 27, 2008.
http://phys.org/n...tml#nRlv

word-to-ya-muthas
marcush
not rated yet Mar 24, 2014
How could one obtain such a device? If similar data was available back in 2008, the lack of commercialisation is a little disappointing considering the potential market for it.
alfie_null
not rated yet Mar 24, 2014
Couldn't help thinking of "A Clockwork Orange". Not that I wish to be critical.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.