Gene implicated in progression and relapse of deadly breast cancer

March 24, 2014

Scientists from Weill Cornell Medical College and Houston Methodist have found that a gene previously unassociated with breast cancer plays a pivotal role in the growth and progression of the triple negative form of the disease, a particularly deadly strain that often has few treatment options. Their research, published in this week's Nature, suggests that targeting the gene may be a new approach to treating the disease.

About 42,000 new cases of triple negative breast cancer (TNBC) are diagnosed in the United States each year, about 20 percent of all breast cancer diagnoses. Patients typically relapse within one to three years of being treated.

Senior author Dr. Laurie H. Glimcher, the Stephen and Suzanne Weiss Dean of Weill Cornell Medical College, wanted to know whether the gene – already understood from her prior work to be a critical regulator of immune and metabolic functions – was important to cancer's ability to adapt and thrive in the oxygen- and nutrient-deprived environments inside of tumors. Using cells taken from patients' tumors and transplanted into mice, Dr. Glimcher's team found that the gene, XBP1, is especially active in triple negative breast cancer, particularly in the progression of malignant cells and their resurgence after treatment.

"Patients with the triple negative form of breast cancer are those who most desperately need new approaches to treat their disease," said Dr. Glimcher, who is also a professor of medicine at Weill Cornell. "This pathway was activated in about two-thirds of patients with this type of breast cancer. Now that we better understand how this gene helps tumors proliferate and then return after a patient's initial treatment, we believe we can develop more effective therapies to shrink their growth and delay relapse."

The group, which included investigators from nine institutions, examined several types of breast cancer cell lines. They found that XBP1 was particularly active in basal-like cultivated in the lab and in triple negative breast from patients. When they suppressed the activity of the gene in laboratory cell cultures and animal models, however, the researchers were able to dramatically reduce the size of tumors and the likelihood of relapse, especially when these approaches were used in conjunction with the chemotherapy drugs doxorubicin or paclitexel. The finding suggests that XBP1 controls behaviors associated with tumor-initiating cells that have been implicated as the originators of tumors in a number of cancers, including that of the breast, supporting the hypothesis that combination therapy could be an effective treatment for triple negative breast cancer.

The scientists also found that interactions between XBP1 and another transcriptional regulator, HIF1-alpha, spurs the cancer-driving proteins. Silencing XBP1 in the TNBC cell lines reduced the tumor cells' growth and other behaviors typical of metastasis.

"This starts to demonstrate how cancer cells co-opt the endoplasmic reticulum stress response pathway to allow tumors to grow and survive when they are deprived of nutrients and oxygen," said lead author Dr. Xi Chen, a postdoctoral associate at Weill Cornell, referring to the process by which healthy cells maintain their function. "It shows the interaction between two critical pathways to make the better able to deal with a hostile microenvironment, and in that way offers new strategies to target triple negative ."

Scientists still need to study how those strategies would help women with the disease.

"Obviously we need to know now whether what our group saw in models is what we'll see in patients," said coauthor Dr. Jenny Chang, professor of medicine at Weill Cornell and director of the Houston Methodist Cancer Center. "We are very excited about the prospect of moving this research forward as soon as possible for the benefit of patients."

Explore further: Protein linked to invasive spread of triple-negative breast cancer may lead to targeted therapies

More information: www.nature.com/nature/journal/ … ull/nature13119.html

Related Stories

Protein linked to invasive spread of triple-negative breast cancer may lead to targeted therapies

February 26, 2014
Triple-negative breast cancer (TNBC) is one of the most aggressive forms of the disease and affects almost one in seven of the 1.5 million women diagnosed with breast cancer worldwide each year. TNBC tumors are missing three ...

New finding points to potential options for attacking stem cells in triple-negative breast cancer

February 17, 2014
New research from the University of Michigan Comprehensive Cancer Center and Georgia Regents University finds that a protein that fuels an inflammatory pathway does not turn off in breast cancer, resulting in an increase ...

New hope for tough-to-treat breast cancers

March 19, 2014
(Medical Xpress)—Tufts researchers have identified a new target for treating particularly aggressive forms of breast cancer that could potentially save thousands of lives each year.

Regulator of gene expression responsible for the progression of breast cancer

February 28, 2014
Yale Cancer Center researchers have identified a regulator of gene expression that is responsible for the progression of breast cancer and its metastasis to the lung. The study appears online in Cell Reports.

Additional drug shows promise for women with triple-negative breast cancer

December 13, 2013
In a nationwide study of women with "triple-negative" breast cancer, adding the chemotherapy drug carboplatin or the angiogenesis inhibitor Avastin to standard chemotherapy drugs brought a sharp increase in the number of ...

Integrin cell adhesion receptors are risky cancer drug targets

February 11, 2014
A possible cancer treatment strategy might in fact lead to increased metastasis in some cases. This finding from a team of LACDR researchers led by Erik Danen made the cover of the February 11 edition of Science Signaling.

Recommended for you

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.