Learning how to listen with neurofeedback

March 6, 2014 by Alex Brandmeyer
Learning how to listen with neurofeedback
Figure 1. Example of neurofeedback software. Credit: Wikipedia

When listening to music or learning a new language, auditory perceptual learning occurs: a process in which your recognition of specific sounds improves, making you more efficient in processing and interpreting them. Neuroscientist Alex Brandmeyer shows that auditory perceptual learning can be facilitated using neurofeedback, helping to focus on the sound differences that really matter. On 19 March, he will receive his doctorate from Radboud University Nijmegen.

By presenting your as visual, sound or haptic feedback, neurofeedback allows you to regulate it while it is recorded. Brandmeyer used electroencephalography (EEG) to record brain activity of research participants while they listened to sounds. The measurements were visualised as changes in the clarity of films viewed by participants. Increases in clarity corresponded to enhancements of specific patterns of brain activity underlying auditory perception of the sounds. Participants were encouraged to adjust their listening strategies in order to improve the neurofeedback signal.

Importance of the mother tongue

During his PhD at the Donders Institute of Radboud University Nijmegen, Brandmeyer investigated the differences in brain activity between native Dutch and English speakers while they listened to English sounds. Although the Dutch participants were fluent in English, their brains showed different responses to English sounds than those of native English speakers. According to Brandmeyer, this shows how subjectively we deal with sound: 'Some sound contrasts are important in one language but not in the other. These differences arise because our brains develop in a specific linguistic environment.' For instance, the vowel in the first syllable of the words 'cattle' or 'kettle' sounds the same for Dutch listeners , but not for native born English listeners.

Learning how to listen with neurofeedback
Figure 2. Test subject connected to the EEG equipment.

Learning how to listen

Brandmeyer also explored how we listen to music. During four sessions over the course of a week, test subjects had to listen to simple sounds with various pitches and distinguish them from one another. Additionally, half of the subjects received neurofeedback training based on their own brain activity, while the other half received fake neurofeedback. In the first group, the measured brain responses were enhanced during the training sessions relative to the control group. 'Longer periods of neurofeedback training could well lead to stronger effects', says Brandmeyer, 'but this requires more research in the future.'

In his thesis, Brandmeyer presents methods to make neurofeedback applicable for brain-computer interfaces (BCIs): software that you control with brain activity. He performed his research at the department of Cognitive Artificial Intelligence at the Donders Institute for Brain, Cognition and Behaviour of Radboud University Nijmegen. Brandmeyer is currently employed as a postdoctoral researcher at the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig, where he focuses on the neural mechanisms underlying auditory scene analysis. This is the process through which mixtures of sound can be perceived as coming from distinct objects in the environment, for instance when you are in a room with multiple people talking simultaneously.

Explore further: Training your brain using neurofeedback

Related Stories

Training your brain using neurofeedback

January 21, 2014
A new brain-imaging technique enables people to 'watch' their own brain activity in real time and to control or adjust function in pre-determined brain regions. The study from the Montreal Neurological Institute and Hospital ...

Kids with ADHD may benefit from 'brain wave' training in school, study says

February 17, 2014
(HealthDay)—New research suggests that children with attention-deficit/hyperactivity disorder (ADHD) may benefit from getting a type of training during school hours that monitors their brain waves to help improve attention.

Neurofeedback tunes key brain networks, improving subjective well-being in PTSD

December 3, 2013
Pioneering research conducted at Western University (London, Canada) points to a promising avenue for the treatment of post-traumatic stress disorder (PTSD): utilising neurofeedback training to alter the plasticity of brain ...

Keep it complex and improve your brain power

January 24, 2014
(Medical Xpress)—If your New Year's resolutions include toning the brain as well as the body, the key could be a vigorous mental workout. Researchers from our Department of Psychology have discovered that persevering with ...

Learning to control brain activity improves visual sensitivity

December 4, 2012
Training human volunteers to control their own brain activity in precise areas of the brain can enhance fundamental aspects of their visual sensitivity, according to a new study. This non-invasive 'neurofeedback' approach ...

Study finds potential key to learning a new language

November 20, 2013
A new study by University of Houston (UH) researchers may lead to dramatic changes in the way language is taught and learned – especially a second language. These findings are important because statistics show 60 percent ...

Recommended for you

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

Mother's brain reward response to offspring reduced by substance addiction

July 27, 2017
Maternal addiction and its effects on children is a major public health problem, often leading to high rates of child abuse, neglect and foster care placement. In a study published today in the journal Human Brain Mapping, ...

'Residual echo' of ancient humans in scans may hold clues to mental disorders

July 26, 2017
Researchers at the National Institute of Mental Health (NIMH) have produced the first direct evidence that parts of our brains implicated in mental disorders may be shaped by a "residual echo" from our ancient past. The more ...

Laser used to reawaken lost memories in mice with Alzheimer's disease

July 26, 2017
(Medical Xpress)—A team of researchers at Columbia University has found that applying a laser to the part of a mouse brain used for memory storage caused the mice to recall memories lost due to a mouse version of Alzheimer's ...

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.