Scientists discover epigenetic mechanism that could affect risk of obesity-related disease

March 12, 2014

In one of the largest epigenome-wide association studies (EWAS) to date, published in The Lancet, scientists have identified a new epigenetic mechanism that may play a role in mediating some of the harmful effects of becoming overweight, such as diabetes.

"Obesity increases the risk of heart disease, diabetes, cancer, and a host of other problems, but we know little about the mechanisms by which increases such risk. Genes only explain part of the story", says study leader Professor Nilesh Samani, British Heart Foundation Professor of Cardiology at the University of Leicester, UK.

"Epigenetic changes caused by variation in DNA or environmental factors such as diet, stress, and exposure to chemicals can affect the way genes work (are turned on and off) and may also influence disease susceptibility."

In this study, Samani and colleagues looked at epigenetic changes in DNA in relation to (BMI), a widely used measure of obesity. One particular type of epigenetic change, a process known as DNA methylation, was examined. DNA methylation involves specific locations along the DNA called cytosine bases, which are modified by the addition of methyl chemical groups.

The researchers used microarray technology to measure methylation levels at over 351 000 sites across the genome using whole blood DNA samples taken from 459 individuals of European origin, and identified five sites where the level of methylation correlated with BMI.

These findings were then tested in two additional sets of patients of European ancestry. The results confirmed strong associations with three methylation sites (cg22891070, cg27146050, and cg166772562) located near the HIF3A gene, suggesting that this is a genuine modification of DNA related to changes in weight.

The researchers found that for every 10% increase in methylation at the most significant site—cg22891070—BMI increased by 3.6%, equating to about 0.98 kg/m2 for a person in the original cohort with an average BMI of 27 kg/m2. In comparison, an allele of the known obesity risk gene, FTO, accounts for a more modest 0.39kg/m2 increase in BMI.

They went on to show that changes in methylation at sites in the HIF3A gene also linked with BMI in DNA from fat tissue (a tissue directly involved in obesity) but not from skin DNA, taken from a group of female twins. Further study revealed that changes in methylation of HIF3A were likely to be a result of increased weight rather than a cause.

According to Professor Samani, "The finding of a correlation between HIF3A methylation and BMI was quite unexpected. HIF3A is a component of a protein, hypoxia inducible factor (HIF), which senses oxygen levels in cells and tries to compensate for low levels by affecting the expression of a large number of other genes. To find that the methylation of HIF3A is increasingly altered as someone becomes more obese is remarkable and raises the possibility that HIF may also be involved in mediating some of the deleterious effects of becoming overweight."

He concludes, "Further studies are needed to understand how and when obesity affects methylation at HIF3A and what the consequences are, but the findings could eventually lead to new treatments that may tackle the adverse effects of obesity on health. At a more general level, our study shows that investigating in DNA may reveal new mechanisms involved in common diseases."

Writing in a linked Comment, Therese Murphy and Jonathan Mill from the University of Exeter, Devon, UK, say, "[This] study represents an important advance for both obesity-related research and the specialty of epigenetic epidemiology. BMI is a good phenotype for population-based epigenomic studies: it is an accurate measure that is routinely collected in most cohort studies. The widespread uptake of [new tools for epigenetic profiling]...means that large collaborative EWAS meta-analyses can be done, building on the success of similar approaches in genetics. Whether EWAS will be as successful for other clinical phenotypes—especially those manifest in more inaccessible tissues such as brain, or more directly affected by confounding factors such as cellular heterogeneity, environmental exposures, and drugs—remains to be seen."

Explore further: Methylation linked to metabolic disease

More information: Study paper: www.thelancet.com/journals/lan … (13)62674-4/abstract

Related Stories

Methylation linked to metabolic disease

November 11, 2013
(Medical Xpress)—In the first in-depth analysis of DNA methylation in fat, a process that affects the regulation of genes, researchers have linked regions of methylation to metabolic traits such as high body mass index ...

Linking risk factors and disease origins in breast cancer

November 20, 2013
Researchers from the Geisel School of Medicine at Dartmouth have found that epigenetic changes to DNA are associated with aging in disease-free breast tissues and are further altered in breast tumors. Epigenetic changes describe ...

New study offers insight into why cancer incidence increases with age

February 3, 2014
The accumulation of age-associated changes in a biochemical process that helps control genes may be responsible for some of the increased risk of cancer seen in older people, according to a National Institutes of Health study.

DNA changes during pregnancy persist into childhood

September 4, 2013
Even before they are born, babies accumulate changes in their DNA through a process called DNA methylation that may interfere with gene expression, and in turn, their health as they grow up. But until now it's been unclear ...

Aging impacts epigenome in human skeletal muscle

November 20, 2013
Our epigenome is a set of chemical switches that turn parts of our genome off and on at strategic times and locations. These switches help alter the way our cells act and are impacted by environmental factors including diet, ...

Epigenetic changes to fat cells following exercise

July 3, 2013
Exercise, even in small doses, changes the expression of our innate DNA. New research from Lund University in Sweden has described for the first time what happens on an epigenetic level in fat cells when we undertake physical ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.