TGen study identifies gene fusion as likely cause of rare type of thyroid cancer

March 19, 2014

In a scientific first, the fusion of two genes, ALK and EML4, has been identified as the genetic driver in an aggressive type of thyroid cancer, according to a study by the Translational Genomics Research Institute (TGen).

These groundbreaking findings are based on genetic sequencing of tumor cells from a 62-year-old patient with an aggressive tall cell variant of papillary thyroid cancer, according to the study published Tuesday, March 18, in the World Journal of Surgery, the official journal of the International Society of Surgery.

The patient's thyroid cancer recurred after he had undergone multiple operations, and chemotherapy, and so the patient appeared to be a candidate for additional study.

Following one surgery in June 2011, a sample of the patient's tumor was obtained and studied by , in which TGen spells out, in order, the more than 3 billion chemical base pairs that make up human DNA.

A comparison of the tumor DNA to the patient's normal DNA found 57 mutations in 55 genes of the cancer genome. The investigators also found a rearrangement between two genes. This translocation and fusion of EML4-ALK was identified as the genetic driver of the patient's cancer.

"This is the first report of the whole of a papillary thyroid cancer, in which we identified an EML4-ALK translocation. This is important because we have a drug that can target this fusion and treat the patient," said Dr. Michael J. Demeure, Clinical Professor and Director of TGen's Rare Cancer Unit, and the study's principal investigator and lead author. "This patient's tumor did not harbor more well-known gene mutations that are associated with most thyroid cancers. These findings suggest that this tumor has a distinct oncogenesis, or the genetic cause of cancer."

There are few therapeutic options for patients with radioiodine-resistant aggressive papillary . The EML4-ALK fusion appears in about 5 percent of lung cancers, which are usually treated with a targeted drug known as crizotinib.

By identifying the EML4-ALK fusion in this study, TGen was able to recommend crizotinib for this study's 62-year-old patient, whose cancer then remained progression-free for more than 6 months.

"Whole-genome sequencing technologies offer the promise of allowing for precision targeted treatment for human diseases, including cancer," said Dr. John Carpten, TGen Deputy Director of Basic Science, and Director of TGen's Integrated Cancer Genomics Division, and the study's senior author. "Through a greater understanding of the molecular oncogenesis of a specific cancer, one would hope to devise more effective, individualized treatments."

Whole genome sequencing is particularly beneficial for with relatively rare tumors, since they generally have less access to new drug treatments often available through clinical trials, according to the study, Whole-genome sequencing of an aggressive BRAF wild-type identified EML4-ALK translocation as a therapeutic target.

Also contributing to this study were physicians from Arizona Oncology, and Scottsdale Pathology Consultants.

Explore further: Not all lung cancer patients who could benefit from crizotinib are identified by FDA-approved test

Related Stories

Not all lung cancer patients who could benefit from crizotinib are identified by FDA-approved test

August 28, 2012
Break apart a couple worm-like chromosomes and they may reconnect with mismatched tips and tails – such is the case of the EML4-ALK fusion gene that creates 2-7 percent of lung cancers. Almost exactly a year ago, the FDA ...

Recurrent but rare mutations might underlie cancer growth

February 26, 2014
A potential new gene mutation that might drive lung cancer development and growth has been identified by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard ...

Targeting the EGFR and FGFR cellular pathways for bile duct cancer

February 14, 2014
Researchers at the Translational Genomics Research Institute (TGen) and physicians at Mayo Clinic's Individualized Medicine Clinic have personalized drug treatments for patients with cholangiocarcinoma using genomic sequencing ...

Gene fusion in lung cancer afflicting never-smokers may be target for therapy

December 22, 2011
Smoking is a well-known risk factor for lung cancer, but nearly 25% of all lung cancer patients have never smoked. In a study published online today in Genome Research, researchers have identified a previously unknown gene ...

The genetic basis for uncommon and often unidentified medical conditions

February 27, 2014
In accord with this week's 7th annual World Rare Disease Day, Arizonans and patients from throughout the nation and around the globe are benefitting from rare disease research conducted by the non-profit Translational Genomics ...

Whole genome sequencing of rare olfactory neuroblastoma

May 23, 2012
The Translational Genomics Research Institute (TGen) and the Virginia G. Piper Cancer Center at Scottsdale Healthcare have conducted whole genome sequencing (WGS) of a rare nasal tract cancer called olfactory neuroblastoma ...

Recommended for you

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.