New breast cancer imaging method promising

April 24, 2014 by Joost Bruysters, University of Twente

The new PAMmography method for imaging breast cancer developed by the University of Twente's MIRA research institute and the Medisch Spectrum Twente hospital appears to be a promising new method that could improve on existing imaging technology like X-ray mammography and MRI. Such is the conclusion reached by Michelle Heijblom after well over four years of doctoral research on this method, research that will see her obtain her doctoral degree on 23 April. For her doctoral research, Heijblom conducted clinical studies of patients with suspect abnormalities.

University of Twente researchers had previously developed a new for detecting breast cancer: PAMmography. For her doctoral research, Michelle Heijblom conducted clinical studies of patients with suspect abnormalities, comparing the effectiveness of the PAMmography method with methods like X-ray mammography, the golden standard in breast cancer examination. Her research has led her to conclude that PAMmography is effective and could improve on the detection methods currently used. "We conducted PAMmography measurements on 73 and were able to detect the malignancy in nearly all of them."

One important advantage of this new method, Heijblom concludes, is that density has no impact on the visibility of the abnormality. This means that, on paper at least, the method can also be used for women below fifty. X-ray mammography is less suitable for detecting in these women, as their breast tissue is denser.

Technology

The PAM (Photoacoustic Mammoscope) irradiates the breast with short pulses of light that produce an ultrasound wherever there are large concentrations of blood - like around malignant tumours. The ultrasound next travels from the tumour to the surface skin, where it can be read. During her doctoral research, Heijblom has proven that this new technique is able to detect almost all malignant tumours and also to produce clear images where X-ray images show next to nothing.

Heijblom in her research made used of the first PAM prototype, which employs one light frequency to conduct its measurements. "This was a relatively simple machine, yet still allowed us to see quite a lot." The second, recently developed, prototype is more advanced and measures by two light frequencies. Heijblom believes this will greatly improve the machine's accuracy. Yet she warns against being overly optimistic. "This is entirely new technology. A lot of research and development is required to further improve the method. So it will take years at least before the method can be used in regular healthcare. Still, prospects are positive."

Research

Michelle Heijblom conducted her doctoral research within the Biomedical Photonic Imaging department of the University of Twente's MIRA research institute. Mr Srirang Manohar, PhD, acted as her direct supervisor and Professor Wiendelt Steenbergen, PhD, and Professor Tom van Leeuwen, PhD, were her doctoral thesis supervisors. The research was partially funded by the Netherlands Enterprise Agency (previously known as Agentschap NL). The research was conducted in close cooperation with the Medisch Centrum Twente hospital.

Explore further: A promising new method for the diagnosis of breast cancer

Related Stories

A promising new method for the diagnosis of breast cancer

October 24, 2013
According to a study that has just been published, a novel mammography procedure developed at the Paul Scherrer Institute (PSI), in cooperation with the Certified Breast Centre of the Kantonsspital Baden and the industrial ...

Photoacoustics spares healthy lymph nodes in patients with metastasized cancer

April 18, 2013
If a tumour has spread through the lymph nodes, the decision is often taken to exercise caution and remove extra tissue, to prevent it from spreading further. This often involves the removal of healthy lymph nodes. Photoacoustic ...

New breast cancer imaging technique could cut down on false positives

September 27, 2013
(Medical Xpress)—A joint BYU-Utah research team is developing a new breast cancer screening technique that has the potential to reduce false positives, and, possibly, minimize the need for invasive biopsies.

Recommended for you

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

Presurgical targeted therapy delays relapse of high-risk stage 3 melanoma

January 17, 2018
A pair of targeted therapies given before and after surgery for melanoma produced at least a six-fold increase in time to progression compared to standard-of-care surgery for patients with stage 3 disease, researchers at ...

Dulling cancer therapy's double-edged sword

January 17, 2018
Researchers have discovered that killing cancer cells can actually have the unintended effect of fueling the proliferation of residual, living cancer cells, ultimately leading to aggressive tumor progression.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.