Fast way to measure DNA repair

April 22, 2014 by Anne Trafton
MIT biological engineers have developed a way to test several different DNA repair pathways in one cell. In each of these images, the cell is producing a different colored fluorescent protein, indicating whether it has successfully repaired one of four different types of DNA damage. Credit: Aprotim Mazumder

Our DNA is under constant attack from many sources, including environmental pollutants, ultraviolet light, and radiation. Fortunately, cells have several major DNA repair systems that can fix this damage, which may lead to cancer and other diseases if not mended.

The effectiveness of these repair systems varies greatly from person to person; scientists believe that this variability may explain why some people get cancer while others exposed to similar DNA-damaging agents do not. A team of MIT researchers has now developed a test that can rapidly assess several of these repair systems, which could help determine individuals' risk of developing cancer and help doctors predict how a given patient will respond to chemotherapy drugs.

The , described in the Proceedings of the National Academy of Sciences the week of April 21, can analyze four types of DNA repair capacity simultaneously, in less than 24 hours. Previous tests have been able to evaluate only one system at a time.

"All of the repair pathways work differently, and the existing technology to measure each of those pathways is very different for each one. It takes expertise, it's time-consuming, and it's labor-intensive," says Zachary Nagel, an MIT postdoc and lead author of the PNAS paper. "What we wanted to do was come up with one way of measuring all DNA repair pathways at the same time so you have a single readout that's easy to measure."

The research team, led by professor Leona Samson, used this approach to measure DNA repair in a type of immortalized human blood cells called lymphoblastoid cells, taken from 24 healthy people. They found a huge range of variability, especially in one repair system where some people's cells were more than 10 times more efficient than others.

"None of the cells came out looking the same. They each have their own spectrum of what they can repair well and what they don't repair well. It's like a fingerprint for each person," says Samson, who is the Uncas and Helen Whitaker Professor, an American Cancer Society Professor, and a member of MIT's departments of biological engineering and of biology, Center for Environmental Health Sciences, and Koch Institute for Integrative Cancer Research.

Measuring repair

With the new test, the MIT team can measure how well cells repair the most common DNA lesions, including single-strand breaks, double-strand breaks, mismatches, and the introduction of alkyl groups caused by pollutants such as fuel exhaust and tobacco smoke.

To achieve this, the researchers created five different circular pieces of DNA, four of which carry a specific type of DNA damage, also called DNA lesions. Each of these circular DNA strands, or plasmids, also carries a gene for a different colored fluorescent protein. In some cases, the DNA lesions prevent those genes from being expressed, so when the DNA is successfully repaired, the cell begins to produce the fluorescent protein. In others, repairing the DNA lesion turns the fluorescent gene off.

By introducing these plasmids into cells and reading the fluorescent output, scientists can determine how efficiently each kind of lesion has been repaired. In theory, more than five plasmids could go into each cell, but the researchers limited each experiment to five reporter plasmids to avoid potential overlap among colors. To overcome that limitation, the researchers are also developing an alternative tactic that involves sequencing the messenger RNA produced by cells when they copy the plasmid genes, instead of measuring fluorescence.

In this paper, the researchers tested the sequencing approach with just one type of DNA repair, but it could allow for unlimited tests at one time, and the researchers could customize the target DNA sequence to reveal information about which type of lesion the plasmid carries, as well as information about which patient's cells are being tested. This would provide the ability for many different patient samples to be tested in the same batch, making the test more cost-effective.

Making predictions

Previous studies have found that many different types of DNA repair capacity can vary greatly among apparently healthy individuals. Some of these differences have been linked with cancer vulnerability; for example, a genetic defect in a type of DNA repair called nucleotide excision repair often leads to a condition called xeroderma pigmentosum, in which DNA damage caused by ultraviolet light goes unrepaired and leads to skin cancer.

Scientists have also identified links between DNA repair and neurological, developmental, and immunological disorders, but useful predictive DNA-repair-based tests have not been developed, largely because it has been impossible to rapidly analyze several different types of DNA repair capacity at once.

Samson's lab is now working on adapting the new test so it can be used with blood samples taken from patients, allowing researchers to identify people who are at higher risk and potentially enabling prevention or earlier diagnosis of diseases linked to DNA repair. Such a test could also be used to predict patients' response to chemotherapy drugs, which often work by damaging cancer cells' DNA, or to determine how much radiation treatment a patient can tolerate.

The researchers also believe this test could be exploited to screen for new drugs that inhibit or enhance DNA repair. Inhibitors could be targeted to tumors to make them more susceptible to chemotherapy, while enhancers could help protect people who have been accidentally exposed to DNA-damaging agents, such as radiation.

Another important application for this test could be studying fundamental biological processes such as how cells recruit backup repair systems to fill in when another pathway is overwhelmed, says Samuel Wilson, a principal investigator at the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health (NIH).

"There's an opportunity to use these multiplexed plasmids in biological assays where several repair pathways can be probed at the same time, offering a very advanced tool to allow us to make much better interpretations about the repair status of a cell," says Wilson, who was not part of the research team.

Explore further: Malfunction in molecular 'proofreader' prevents repair of UV-induced DNA damage

More information: Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1401182111

Related Stories

Malfunction in molecular 'proofreader' prevents repair of UV-induced DNA damage

April 21, 2014
Malfunctions in the molecular "proofreading" machinery, which repairs structural errors in DNA caused by ultraviolet (UV) light damage, help explain why people who have the disease xeroderma pigmentosum (XP) are at an extremely ...

New insights into DNA repair process may spur better cancer therapies

September 30, 2013
By detailing a process required for repairing DNA breakage, scientists at the Duke Cancer Institute have gained a better understanding of how cells deal with the barrage of damage that can contribute to cancer and other diseases.

Cells do not repair damage to DNA during mitosis because telomeres could fuse together

March 20, 2014
Throughout a cell's life, corrective mechanisms act to repair DNA strand breaks. The exception is during the critical moment of cell division, when chromosomes are most vulnerable. Toronto researchers found out why DNA repair ...

Scientists identify 'long distance scanner' for DNA damage

February 19, 2014
Scientists at the University of Bristol have discovered that a mechanism for preventing mutation within important genes involves long distance scanning of DNA by a molecular motor protein.

Novel cancer cell DNA damage repair mechanism unveils

December 10, 2013
Research with a Finnish background facilitates the development of more effective cancer medication

Enhancement of chemotherapy by prevention of tumor cell repair

February 20, 2014
Chemotherapies are cancer treatments that work by inducing lesions in the DNA of tumour cells in order to inhibit their proliferation. However, the body naturally tries to repair these lesions, and thus reduces the efficacy ...

Recommended for you

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.