Gene therapy improves limb function following spinal cord injury

April 1, 2014, Society for Neuroscience

Delivering a single injection of a scar-busting gene therapy to the spinal cord of rats following injury promotes the survival of nerve cells and improves hind limb function within weeks, according to a study published April 2 in The Journal of Neuroscience. The findings suggest that, with more confirming research in animals and humans, gene therapy may hold the potential to one day treat people with spinal cord injuries.

The is the main channel through which information passes between the brain and the rest of the body. Most are caused by damage to the axons, the long extensions that use to send these messages. Once these injuries take place, scar tissue forms and prevents the damaged nerves from re-growing.

Previous animal studies show that one way to promote the growth of injured spinal nerve is to administer the enzyme chondroitinase ABC (ChABC), which digests scar-forming proteins, to the site of injury. However, because ChABC breaks down quickly, maintaining these beneficial effects for a long period of time requires invasive and repeated administration of the enzyme to the spinal cord. To get around this hurdle, in recent years, scientists began exploring gene therapy as a method to efficiently coax spinal cord cells to produce the enzyme.

In the current study, a group of researchers led by Elizabeth Bradbury, PhD, of King's College London used a single injection to deliver the ChABC gene therapy into the spinal cord of injured adult rats. The treatment not only led the spinal cord cells to produce and secrete ChABC in large quantities over areas spanning the injury epicenter, it helped to maintain the overall health of the damaged spinal cord and restored hind limb function in the animals within 12 weeks.

"These findings provide convincing evidence that gene therapy with chondroitinase not only encourages the sprouting of injured axons, but also imparts significant protection to nerve cells," said Mark Tuszynski, MD, PhD, who studies how nerve cells recover following injury at the University of California, San Diego, and was not involved in this study. "These are new and important findings that could lead to the development of testable therapies for spinal cord injury in people," he added.

Bradbury's team delivered the ChABC gene into the matrix of the spinal cord (the space between ). Twelve weeks later, the animals that received the therapy had more surviving spinal and fibers present through and around the scar compared with animals that did not receive the treatment. ChABC gene therapy also led to the recovery of hind limb function in the animals, allowing them to navigate the rungs of a horizontal ladder.

Additional analysis revealed that ChABC gene therapy changed the way that inflammatory cells in the region respond following injury. Normally, after injury, immune cells invade the spinal cord and cause destructive and irreparable tissue damage. However, ChABC decreased the presence of these cells and increased the presence of other immune cells called M2 macrophages that help to reduce inflammation and enhance tissue repair.

"This scar-busting therapy represents an important advance since it reveals a novel interaction between the supportive matrix and the following an injury," Bradbury said. The ability to treat large areas of the spinal cord for extended periods of time in animals "will be important for scaling up to the larger human spinal cord for future translation of this therapy to the clinic," she added.

Explore further: Stem cell scarring aids recovery from spinal cord injury

Related Stories

Stem cell scarring aids recovery from spinal cord injury

October 31, 2013
In a new study, researchers at Karolinska Institutet in Sweden show that the scar tissue formed by stem cells after a spinal cord injury does not impair recovery; in fact, stem cell scarring confines the damage. The findings, ...

Technique to promote nerve regeneration after spinal cord injury restores bladder function in rats

June 25, 2013
Using a novel technique to promote the regeneration of nerve cells across the site of severe spinal cord injury, researchers have restored bladder function in paralyzed adult rats, according to a study in the June 26 issue ...

New findings on neurogenesis in the spinal cord

March 5, 2014
Research from Karolinska Institutet in Sweden suggests that the expression of the so called MYC gene is important and necessary for neurogenesis in the spinal cord. The findings are being published in the journal EMBO Reports.

Study finds axon regeneration after Schwann cell graft to injured spinal cord

December 23, 2013
A study carried out at the University of Miami Miller School of Medicine for "The Miami Project to Cure Paralysis" has found that transplanting self-donated Schwann cells (SCs, the principal ensheathing cells of the nervous ...

Research offers hope in new treatment for spinal cord injuries

May 3, 2011
Rutgers researchers have developed an innovative new treatment that could help minimize nerve damage in spinal cord injuries, promote tissue healing and minimize pain.

Researcher focuses on the repair of spinal cords

November 11, 2013
A spinal cord injury can be a devastating condition, often resulting in life-long disability and a range of secondary complications.

Recommended for you

Decoding the chemistry of fear

March 19, 2018
Ask a dozen people about their greatest fears, and you'll likely get a dozen different responses. That, along with the complexity of the human brain, makes fear—and its close cousin, anxiety—difficult to study. For this ...

Better understanding amyotrophic lateral sclerosis by looking at how cells change

March 19, 2018
It took eight long years of research, but now an international team led by neuroscientists at Université de Montréal has discovered a basic molecular mechanism that better helps understand how Lou Gehrig's disease, or amyotrophic ...

Breakthrough discovery in neurotransmission

March 15, 2018
Samir Haj-Dahmane, Ph.D., senior research scientist at the University at Buffalo Research Institute on Addictions, has discovered how certain neurotransmitters are transported and reach their targets in the brain, which could ...

Study finds alcohol dampens brain waves associated with decision-making but not motor control

March 15, 2018
We all know that alcohol impairs our judgement, alertness and performance on tasks requiring attention, but the mechanism behind booze's effect on cognition still isn't well-understood. Now, a new study led by psychologists ...

Research reveals brain mechanism involved in language learning

March 15, 2018
Learning a new language may be more of a science than an art, a University of Sussex study finds.

New research sheds light on underlying cause of brain injury in stroke

March 15, 2018
New research shows how the novel drug QNZ-46 can help to lessen the effects of excess release of glutamate in the brain – the main cause of brain injury in stroke.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.