Genome sequencing of MRSA infection predicts disease severity

April 9, 2014
This is a highly toxic MRSA strain (top) and less toxic strain (bottom) cultured on a blood agar plate. Credit: Ruth Massey

The spread of the antibiotic-resistant pathogen MRSA (methicillin-resistant Staphylococcus aureus) remains a concerning public health problem, especially among doctors trying to determine appropriate treatment options for infected patients. Bacterial pathogens, such as MRSA, cause disease in part due to toxicity, or the bacterium's ability to damage a host's tissue. In a study published online today in Genome Research, researchers used the genome sequence of MRSA to predict which isolates were highly toxic, thus potentially personalizing the treatment of individual MRSA infections.

To study MRSA's toxicity, "the standard approach has always been to focus on a single or small number of genes and proteins," said lead author Ruth Massey, from the University of Bath. However, this has not always been successful because toxicity is a complex trait encoded by many .

In this new study, the authors used whole genome sequences from 90 MRSA isolates to identify over 100 genetic loci associated with toxicity. Despite belonging to the same ST239 clone, the isolates varied greatly in toxicity.

Importantly, the highly toxic isolates shared a common genetic signature. By looking for this signature in the MRSA genome, the researchers were able to predict which isolates were the most toxic and thus more likely to cause severe disease when used to infect mice.

"As the cost and speed of genome sequencing decreases, it is becoming increasingly feasible to sequence the genome of an infecting organism," said Massey. In a clinical setting, sequencing may be useful for deciding the course of MRSA treatment. For example, a clinician may treat a highly toxic infection more aggressively, including prescribing certain antibiotics known to reduce toxin expression. The patient also may be monitored more closely for complications and isolated from others to help control the spread of infection.

Although many novel genetic loci involved in MRSA were identified in this study, it remains to be determined how each influences disease. In addition to examining genomes of other MRSA strains, such as the particularly antibiotic-resistant USA300 strain, the authors are working to apply their methodology to other bacterial pathogens, such as Streptococcus pneumonia, a leading cause of deaths in infants and children under the age of five.

Explore further: New approach could 'trick' MRSA into being less deadly, say scientists

More information: Laabei M, Recker M, Rudkin JK, Aldeljawi M, Gulay Z, Sloan TJ, Williams P, Endres JL, Bayles KW, Fey PD, Kumar Yajjala V, Widhelm T, Hawkins E, Lewis K, Parfett S, Scowen L, Peacock SJ, Holden M, Wilson D, Read TD, van den Elsen J, Priest NK, Feil EJ, Hurst LD, Josefsson E, Massey RC. Predicting the virulence of MRSA from its genome sequence. Genome Res doi: 10.1101/gr.165415.113

Related Stories

New approach could 'trick' MRSA into being less deadly, say scientists

December 19, 2013
With community-associated MRSA (CA-MRSA) posing significant health risks and currently causing huge problems in particular in the USA, a paper out this month presents new findings into how the infection responds to antibiotic ...

MRSA strain gained dominance with help from skin bacteria

December 17, 2013
Scientists believe they have an explanation for how the most common strain of methicillin-resistant Staphylococcus aureus (MRSA) rapidly rose to prominence. Research published in mBio, the online open-access journal of the ...

Scientists identify significant increase in new MRSA strains in non hospital environment

March 5, 2014
Microbiologists from the Dental School in Trinity College Dublin in collaboration with the National MRSA Reference Laboratory at St. James's Hospital Dublin and Alere Technologies in Germany have identified significant increases ...

MRSA declines are sustained in veterans hospitals nationwide

October 29, 2013
Five years after implementing a national initiative to reduce methicillin-resistant Staphylococcus aureus (MRSA) rates in Veterans Affairs (VA) medical centers, MRSA cases have continued to decline, according to a study in ...

Relative proportion of MRSA increasing in S. aureus isolates

April 18, 2013
(HealthDay)—The relative proportion of methicillin-resistant Staphylococcus aureus (MRSA) is increasing in S. aureus isolates, and methicillin-sensitive S. aureus (MSSA) is becoming increasingly resistant to antibiotics, ...

Recommended for you

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

Biologists identify gene involved in kidney-related birth defects

September 18, 2017
A team led by University of Iowa researchers has identified a gene linked to rare, often fatal kidney-related birth defects.

Genomic recycling: Ancestral genes take on new roles

September 18, 2017
One often hears about the multitude of genes we have in common with chimps, birds or other living creatures, but such comparisons are sometimes misleading. The shared percentage usually refers only to genes that encode instructions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.