Study finds long-term survival of human neural stem cells transplanted into primate brain

April 23, 2014, Cell Transplantation Center of Excellence for Aging and Brain Repair

A team of researchers in Korea who transplanted human neural stem cells (hNSCs) into the brains of nonhuman primates and assessed cell survival and differentiation after 22 and 24 months found that the hNSCs had differentiated into neurons at 24 months and did not cause tumors.

The study will be published in a future issue of Cell Transplantation but is currently freely available on-line.

The hNSCs were labeled with magnetic nanoparticles to enable them to be followed by (MRI). They did not use immunosuppressants. According to the researchers, their study is the first to evaluate and show the long-term survival and of hNSCs without the need for immunosuppression.

The researchers concluded that hNSCs could be of "great value" as a source for cell replacement and gene transfer for the treatment of Parkinson's disease, Huntington's disease, Alzheimer's disease, (ALS), spinal cord injury and stroke.

"Stroke is the fourth major cause of death in the US behind heart failure, cancer, and lower respiratory disease," said study co-author Dr. Seung U. Kim of University of British Columbia Hospital's department of neurology in Canada. "While (tPA) treatment within three hours after a stroke has shown good outcomes, has the potential to address the treatment needs of those stroke patients for whom tPA treatment was unavailable or did not help."

Dr. Kim and colleagues in Korea grafted magnetic particle-labeled hNSCs into the brains of laboratory primates and evaluated their performance to assess their survival and differentiation over 24 months. Of particular interest was determining their ability to differentiate into neurons and to determine whether the cells caused tumorogenesis.

"We injected hNSCs into the frontal lobe and the putamen of the monkey brain because they are included in the middle cerebral artery (MCA) territory, which is the main target in the development of the ischemic lesion in animal stroke models," commented Dr. Kim. "Thus, research on survival and differentiation of hNSCs in the MCA territory should provide more meaningful information to in the MCA occlusion stroke model."

The researchers said that they chose NSCs for transplantation because the existence of multipotent NSCs "has been known in developing rodents and in the human brain with the properties of indefinite growth and multipotent potential to differentiate" into the three major CNS cell types – neurons, astrocytes and oligodendrocytes.

"The results of this study serve as a proof-of-principle and provide evidence that hNSCs transplanted into the non-human primate brain in the absence of immunosuppressants can survive and differentiate into neurons," wrote the researchers. "The study also serves as a preliminary study in our planned preclinical studies of hNSC transplantation in non-human primate stroke models."

"The absence of tumors and differentiation of the transplanted into neurons in the absence of immunosuppression after transplantation into non-human primates provides hope that such a therapy could be applicable for use in humans." said Dr. Cesar V. Borlongan, Prof. of Neurosurgery and Director of the Center of Excellence for Aging & Brain Repair at the University of South Florida. "This is an encouraging study towards the use of NSCs to treat neurodegenerative disorders".

Explore further: Pluripotent stem cell-derived neurons may be a viable Parkinson's disease treatment

More information: Lee, S-R.; Lee, H. J.; Cha, S-H.; Jeong, K-J.; Lee, Y. J.; Jeon, C-Y.; Yi, K. S.; Lim, I.; Cho, Z-H.; Chang, K-T.; Kim, S. U. Long-term survival and differentiation of human neural stem cells in nonhuman primate brain with no immunosuppression. Cell Transplant. Appeared or available online: January 29, 2014. http://www.ingentaconnect.com/content/cog/ct/pre-prints/content-ct1117Antonucci2.

Related Stories

Pluripotent stem cell-derived neurons may be a viable Parkinson's disease treatment

June 28, 2013
A team of researchers from Rush University, Yale University, the University of Colorado and the St. Kitts Biomedical Research Foundation transplanted human embryonic stem cells into primate laboratory animals modeled with ...

Bone marrow stem cells show promise in stroke treatment

April 9, 2014
Stem cells culled from bone marrow may prove beneficial in stroke recovery, scientists at UC Irvine's Sue & Bill Gross Stem Cell Research Center have learned.

Autologous transplantation shows promising results for iPS cell therapy in Parkinson's disease

September 26, 2013
A research team led by Professor Jun Takahashi and Assistant Professor Asuka Morizane at the Center for iPS Cell Research and Application (CiRA) at Kyoto University, Japan, has carried out a study to compare the impact of ...

Melatonin pre-treatment is a factor that impacts stem cell survival after transplantation

July 22, 2013
When melatonin, a hormone secreted by the pineal gland, was used as a pre-treatment for mesenchymal stem cells (MSCs) prior to their transplantation into the brains of laboratory animals to repair damage from stroke, researchers ...

Neural stem cell transplants for spinal cord injury maximized by combined, complimentary therapies

April 17, 2012
Combined, complimentary therapies have the ability to maximize the benefits of neural stem cell (NSC) transplantation for spinal cord repair in rat models, according to a study carried out by a team of Korean researchers ...

Therapeutic time window important factor for cord blood cell transplantation after stoke

October 1, 2012
A research team from Germany has found that optimal benefit and functional improvement for ischemic stroke results when human umbilical cord blood mononuclear cells (hUCB MNCs) are transplanted into rat stroke models within ...

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.