New mouse model could revolutionize research in Alzheimer's disease

April 13, 2014, RIKEN
Brain sections from 9 to 4-month-old mice were immunostained with the anti- Abeta antibody, 4G8. Plaque areas were quantified as indicated in the right graph (n = 4, 5, 6, 6, 6, 4 and 6 mice/indicated time point, respectively). Credit: RIKEN

In a study published today in Nature Neuroscience, a group of researchers led by Takaomi Saido of the RIKEN Brain Science Institute in Japan have reported the creation of two new mouse models of Alzheimer's disease that may potentially revolutionize research into this disease.

Alzheimer's disease, the primary cause of dementia in the elderly, imposes a tremendous social and economic burden on modern society. In Japan, the burden of the disease in 2050 is estimated to be a half a trillion US dollars, a figure equivalent to the government's annual revenues.

Unfortunately, it has proven very difficult to develop drugs capable of ameliorating the disease. After a tremendous burst of progress in the 1990s, the pace of discoveries has slowed. Dr. Saido believes that part of the difficulty is the inadequacy of current mouse models to replicate the real conditions of Alzheimer's disease and allow an understanding of the underlying mechanisms that lead to neurodegeneration. In fact, much of the research in Alzheimer's disease over the past decade may be flawed, as it was based on unrealistic models.

The problem with older mouse models is that they overexpress a protein called , or APP, which gives rise to the amyloid-beta (Abeta) peptides that accumulate in the brain, eventually leading to the neurodegeneration that characterizes Alzheimer's disease. However, in mice the overexpression of APP gives rise to effects which are not seen in human Alzheimer's disease.

Brain sections from 2 to 9-month-old APPNL-G-F/NL-G-F mice were immunostained using anti-Abeta-42 antibody. Cortical, hippocampal and subcortical immunoreactive plaque areas were quantified as shown in the right graph (n = 3, 3, 4 and 4 mice/indicated time point, respectively). Credit: RIKEN

For example, the APP mutant mice often die of unknown causes at a young age, and the group believes this may be related to the generation of toxic fragments of APP, such as CTF-beta. In addition, some of the fragments of APP could be neuroprotective, making it difficult to judge whether drugs are being effective due to their effect on Abeta peptides, which are known to be involved in human AD, or whether it is due to other effects that would not be seen in human disease. In addition, the gene for expressing APP is inserted in different places in the genome, and may knock out other genes, creating artifacts that are not seen in humans.

With this awareness, more than a decade ago Dr. Saido launched a project to develop a new that would allow more accurate evaluation of therapies for the disease. One of the major hurdles involved a part of the gene, intron 16, which they discovered was necessary for creating more specific models.

The first mice model they developed (NL-F/NL-F) was knocked in with two mutations found in human familial Alzheimer's disease. The mice showed early accumulation of Abeta peptides, and importantly, were found to undergo cognitive dysfunction similar to the progression of AD seen in human patients. A second model, with the addition of a further mutation that had been discovered in a family in Sweden, showed even faster initiation of memory loss.

These new models could help in two major areas. The first model, which expresses high levels of the Abeta peptides, seems to realistically model the human form of AD, and could be used for elucidating the mechanism of Abeta deposition. The second model, which demonstrates AD pathology very early on, could be used to examine factors downstream of Abeta-40 and Abeta-42 deposition, such as tauopathy, which are believed to be involved in the neurodegeneration. These results may eventually contribute to drug development and to the discovery of new biomarkers for Alzheimer's disease. The group is currently looking at several proteins, using the new models, which have potential to be biomarkers.

According to Dr. Saido, "We have a social responsibility to make Alzheimer's disease preventable and curable. The generation of appropriate mouse models will be a major breakthrough for understanding the mechanism of the disease, which will lead to the establishment of presymptomatic diagnosis, prevention and treatment of the disease."

Explore further: Finding ways to detect and treat Alzheimer's disease

More information: Single App knock-in mouse models of Alzheimer's disease, DOI: 10.1038/nn.3697

Related Stories

Finding ways to detect and treat Alzheimer's disease

February 17, 2014
Alzheimer's disease has long been marked by progress—but not the kind of progress the medical community seeks. It is the most common form of dementia among older Americans, and its risk increases with increasing age; for ...

Diabetes drug shows promise in reducing Alzheimer's disease in an experimental model

March 24, 2014
Researchers from Boston University School of Medicine (BUSM) have found that the diabetic drug, pramlintide, reduces amyloid-beta peptides, a major component of Alzheimer's disease (AD) in the brain and improves learning ...

New therapeutic target discovered for Alzheimer's disease

March 18, 2014
A team of scientists from the University of California, San Diego School of Medicine, the Medical University of South Carolina and San Diego-based American Life Science Pharmaceuticals, Inc., report that cathepsin B gene ...

Researchers identify how a gene linked to both Alzheimer's disease and type 2 diabetes works

July 18, 2011
Researchers at Mount Sinai School of Medicine have identified how a gene for a protein that can cause Type 2 diabetes, also possibly kills nerve cells in the brain, thereby contributing to Alzheimer's disease.

Key cellular auto-cleaning mechanism mediates the formation of plaques in Alzheimer's brain

October 3, 2013
Autophagy, a key cellular auto-cleaning mechanism, mediates the formation of amyloid beta plaques, one of the hallmarks of Alzheimer's disease. It might be a potential drug target for the treatment of the disease, concludes ...

Innovative method to treat Alzheimer's in mice

April 1, 2013
Researchers from the RIKEN Brain Science Institute report that they successfully used a virus vector to restore the expression of a brain protein and improve cognitive functions, in a mouse model of Alzheimer's disease.

Recommended for you

Rocky start for Alzheimer's drug research in 2018

January 19, 2018
The year 2018, barely underway, has already dealt a series of disheartening blows to the quest for an Alzheimer's cure.

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.