Oops! Researchers find neural signature for mistake correction

April 24, 2014
brain
White matter fiber architecture of the brain. Credit: Human Connectome Project.

Culminating an 8 year search, scientists at the RIKEN-MIT Center for Neural Circuit Genetics captured an elusive brain signal underlying memory transfer and, in doing so, pinpointed the first neural circuit for "oops" ? the precise moment when one becomes consciously aware of a self-made mistake and takes corrective action.

The findings, published in Cell, verified a 20 year old hypothesis on how communicate. In recent years, researchers have been pursuing a class of ephemeral brain signals called gamma oscillations, millisecond scale bursts of synchronized wave-like electrical activity that pass through brain tissue like ripples on a pond. In 1993, German scientist Wolf Singer proposed that gamma waves enable binding of associations. For example, in a process called working memory, animals store and recall short-term memory associations when exploring the environment.

In 2006, the MIT team under the direction of Nobel Laureate Susumu Tonegawa began a study to understand working memory in mice. They trained animals to navigate a T maze and turn left or right at a junction for an associated food reward. They found that working memory required communication between two brain areas, the hippocampus and entorhinal cortex, but how mice knew the correct direction and the neural signal for memory transfer of this event remained unclear.

The study's lead author Jun Yamamoto noticed that mice sometimes made mistakes, turning in the wrong direction then pausing, and turning around to go in the correct direction, trials he termed "oops" in his lab notebook. Intrigued, he recorded neural activity in the circuit and observed a burst of gamma waves just before the "oops" moment. He also saw when mice chose the correct direction, but not when they failed to choose the correct direction or did not correct their mistakes.

The critical experiment was to block gamma oscillations and prevent mice from making correct decisions. To do this, the researchers created a transgenic mouse with a light-activated protein called archaerhodopsin (ArchT) in the hippocampus. Using an optic fiber implanted in the brain, light was flashed into the hippocampal-entorhinal circuit, shutting off gamma activity. In accord, the mice could no longer accurately choose the right direction and the number of "oops" events decreased.

The findings provide strong evidence of a role for gamma oscillations in cognition, and raise the prospect of their involvement in other behaviors requiring retrieval and evaluation of . This may open the door to a class of behaviors called metacognition, or "thinking about thinking", the self-monitoring of one's actions. Regarding the appearance of in the "oops" cases, Dr. Tonegawa stated "our data suggest that animals consciously monitor whether their behavioral choices are correct and use memory recall to improve their outcomes"

Explore further: Neurons in the brain tune into different frequencies for different spatial memory tasks

Related Stories

Neurons in the brain tune into different frequencies for different spatial memory tasks

April 17, 2014
Your brain transmits information about your current location and memories of past locations over the same neural pathways using different frequencies of a rhythmic electrical activity called gamma waves, report neuroscientists ...

Why your nose can be a pathfinder

April 16, 2014
Waves in your brain make smells stick to your memories and inner maps.

Brain's motor cortex uses multiple frequency bands to coordinate movement

February 21, 2014
Synchrony is critical for the proper functioning of the brain. Synchronous firing of neurons within regions of the brain and synchrony between brain waves in different regions facilitate information processing, yet researchers ...

Schizophrenia linked to abnormal brain waves

October 16, 2013
Schizophrenia patients usually suffer from a breakdown of organized thought, often accompanied by delusions or hallucinations. For the first time, MIT neuroscientists have observed the neural activity that appears to produce ...

Study reveals how the brain links memories of sequential events

January 23, 2014
Suppose you heard the sound of skidding tires, followed by a car crash. The next time you heard such a skid, you might cringe in fear, expecting a crash to follow—suggesting that somehow, your brain had linked those two ...

Brain waves encode information as time signals

December 16, 2013
How information is processed and encoded in the brain is a central question in neuroscience, as it is essential for high cognitive function such as learning and memory. Theta-gamma oscillations are "brain waves" observed ...

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.