New test makes Parkinson's-like disorder of middle age detectable in young adulthood

April 1, 2014

The very earliest signs of a debilitating neurodegenerative disorder, in which physical symptoms are not apparent until the fifth decade of life, are detectable in individuals as young as 30 years old using a new, sophisticated type of neuroimaging, researchers at UC Davis, the University of Illinois and UCLA have found.

People with the condition—fragile X-associated tremor/ataxia syndrome (FXTAS)—experience tremors, poor balance, cognitive impairments and Parkinsonism. The genetic condition results from a mutation in the fragile X mental retardation gene (FMR1). FXTAS develops in about 40 percent of male and 15 percent of female carriers of the mutated FMR1 gene.

"Our findings suggest that the abnormalities of FXTAS may begin to develop about two decades before symptoms might occur," said Tony J. Simon, study senior author and professor, Department of Psychiatry and Behavioral Sciences.

"Altered Structural Brain Connectome in Young Adult Fragile X Premutation Carriers," is published in Human Brain Mapping.

The study included 88 participants, between age 20 and 40. Of these, 46 were symptomless carriers of the FMR1 gene mutation (fXPCs). They were matched by age and gender with 42 healthy individuals without the gene mutation. IQ test results did not differ between the fXPCs and controls.

In males, it found a correlation between the efficiency of a healthy male carrier's brain network and the extent of his gene mutation. The correlation may prove to be an effective marker of early brain aging in neurologically symptomless fXPCs. The study also revealed that the volume of the brain stem is smaller in male fXPCS than in male controls.

In a novel finding, among the female participants, researchers detected volume differences in several brain areas of female fXPCs and female controls.

"These suggest the presence of compensatory mechanisms in neurologically symptomless females but not in similar male carriers of the gene mutation," said Simon, a researcher affiliated with the UC Davis MIND Institute.

Despite the absence of any clinical symptoms of FXTAS, the male and female gene mutation carriers performed significantly worse in several tests when compared to unaffected controls, Simon said.

"Given the lower risk for FXTAS or related neurological symptoms in female fXPCs, we were surprised to find such differences when their minds and brains were compared with those of the unaffected female controls," he said.

Both groups were evaluated by cognitive testing as well as novel neuroimaging techniques termed "brain connectomics," based on diffusion tensor imaging (DTI) whole-brain tractography. A connectome is a comprehensive map, like a wiring diagram, of neural connections in the brain. The methods used were partly developed by study first author Alex Leow of the University of Illinois, Chicago. The investigation is the first-ever connectome study using DTI-whole brain tractography to compare fXPCs and controls.

The technology allowed Simon and his collaborators to conduct a system-wide investigation of the connections between the brain's grey matter, which is involved in movement control, sensory perception, memory, emotions, speech, decision-making and self-control, and the white matter structures that transmit the signals that underlie these actions and behaviors.

The study suggests that combining analyses of cognitive function, clinical data and connectome patterns in premutation carriers may be more effective ways to characterize an individual's underlying brain pathophysiology, and possibly assessing risks for later degeneration, than is possible using current methods.

In addition to FXTAS, the fragile X-associated disorders include fragile X syndrome, the most common form of intellectual disability in children, and fragile X-associated primary ovarian insufficiency (FXPOI).

"Identifying these brain changes when the individuals who carry the are young is important because there are medical interventions that can help them avoid or reduce their symptoms," said MIND Institute Medical Director Randi Hagerman.

Explore further: Genetic defect causing fragile X-related disorders more common than thought

Related Stories

Genetic defect causing fragile X-related disorders more common than thought

December 20, 2012
A single genetic defect on the X chromosome that can result in a wide array of conditions—from learning and emotional difficulties to primary ovarian insufficiency in women and tremors in middle-aged men—occurs at a much ...

Science surprise: Toxic protein made in unusual way may explain brain disorder

April 18, 2013
A bizarre twist on the usual way proteins are made may explain mysterious symptoms in the grandparents of some children with mental disabilities.

Fragile X gene's prevalence suggests broader health risk

June 14, 2012
The first U.S. population prevalence study of mutations in the gene that causes fragile X syndrome, the most common inherited form of intellectual disability, suggests the mutation in the gene – and its associated health ...

New insight into fragile gene

July 22, 2011
(Medical Xpress) -- New research could change the way health professionals identify and treat late-onset dementia.

Researchers track Huntington's disease progression using PET scans

August 29, 2013
Investigators at The Feinstein Institute for Medical Research have discovered a new way to measure the progression of Huntington's disease, using positron emission tomography (PET) to scan the brains of carriers of the gene. ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.