Parkinson's treatment revisited to avoid adverse effects

April 18, 2014

Parkinson's disease modifies a crucial circuit of the central nervous system in a specific way. This could open up an alternative therapeutic approach that avoids side effects of current therapies.

According to estimates, more than 1.2 million people in Europe are affected by Parkinson's disease. Health costs for the disease amount to €11 billion euros per year. Although a fair number of therapies are available, they have important limitations. There is thus great need to look for better alternative therapies or drugs that can complement the existing ones. Now, the EU-funded REPLACES project, completed in 2013, may have opened the door to potentially new treatments. Project coordinator Monica Di Luca, professor of neuropharmacology at the University of Milan, in Italy, talks to youris.com about a specific way in which Parkinson's disease affects a crucial circuit in the brain.

What are the limits of current therapies for Parkinson's disease?

Today, the available drugs, such as levodopa and so-called dopamine agonists, act on the malfunctioning of nerve signalling through the dopamine receptor in the brain. The problem is that after what we call the honeymoon period, during which they work well, they cause side effects in many patients such as dyskinesia. These are sometimes even more troubling than the symptoms of the disease.

What strategy did you use to overcome such problems?

Everything started few years ago. With my research group, I study a peculiar circuit of the , the so-called glutamatergic excitatory system. The connections in this system are highly dynamic: their morphology is completely modified according to the stimulus they receive. Their plasticity is at the base of high and important functions, such as learning and memory.

This circuit is also very significant for Parkinson's disease because its "destination" is one of the brain regions most severely damaged in the pathology. Fabrizio Gardoni, from my lab, discovered that the glutamatergic synapses in Parkinson's disease are completely altered in a peculiar way. Following that finding, we tried to better understand the functioning of the glutamate receptors. And we also focused on how they can be used as a target to modulate the other kind of receptors that go awry in Parkinson's disease, the dopamine receptors.

What did you find?

We did basic research and worked with animal models of Parkinson's disease: mice, rats and monkeys. We also studied tissues of patients affected from the disease coming from a brain bank. What we found is that, with Parkinson's disease, the glutamate receptors are in fact completely altered, as first assumed. Even more important, we found that the modifications are the same in mice, monkeys and people. This means that they really are specific to the disease and constitute a potentially new target for treatment.

Did you test new treatments acting on this region?

We have already experimented with a couple of molecules, small peptides, to try to correct the defective receptors for glutamate. We have tested them on animals: mice and monkeys. And we hope that there will soon be the occasion to start testing their safety in humans.

Explore further: Common links between neurodegenerative diseases identified

Related Stories

Common links between neurodegenerative diseases identified

April 18, 2014
The pattern of brain alterations may be similar in several different neurodegenerative diseases, which opens the door to alternative therapeutic strategies to tackle these diseases

Research shows that a human protein may trigger the Parkinson's disease

April 9, 2014
A research led by the Research Institute Vall d'Hebron (VHIR), in which the University of Valencia participated, has shown that pathological forms of the α-synuclein protein present in deceased patients with Parkinson's ...

Research reveals new therapeutic targets for Huntington's and Parkinson's disease

March 14, 2014
(Medical Xpress)—Research from Western University has revealed a possible new target for treating movement disorders such as Huntington's disease (HD) and Parkinson's disease. Stephen Ferguson, PhD, a scientist at Western's ...

Therapeutic avenues for Parkinson's investigated at UH

August 23, 2012
Scientists at the University of Houston (UH) have discovered what may possibly be a key ingredient in the fight against Parkinson's disease.

Uncovering the underlying causes of Parkinson's disease

April 3, 2014
(Medical Xpress)—A breakthrough investigation by UTS researchers into the underlying causes of Parkinson's disease has brought us a step closer to understanding how to manage the condition.

Ultra-high-field MRI may allow earlier diagnosis of Parkinson's disease

March 5, 2014
New research shows that ultra-high-field magnetic resonance imaging (MRI) provides detailed views of a brain area implicated in Parkinson's disease, possibly leading to earlier detection of a condition that affects millions ...

Recommended for you

Singing may be good medicine for Parkinson's patients

August 11, 2017
(HealthDay)—Singing? To benefit people with Parkinson's disease? It just may help, a researcher says.

Tracing the path of Parkinson's disease proteins

August 4, 2017
As neurodegenerative disorders such as Parkinson's and Alzheimer's disease progress, misfolded proteins clump together in neurons, recruiting normal proteins in the cell to also misfold and aggregate. Cells in which this ...

Diabetes drug shows potential as disease-modifying therapy for Parkinson's disease

August 3, 2017
A drug commonly used to treat diabetes may have disease-modifying potential to treat Parkinson's disease, a new UCL-led study suggests, paving the way for further research to define its efficacy and safety.

Two new studies offer insights into gastrointestinal dysfunction in Parkinson's patients

July 31, 2017
Constipation is one of the most common non-motor related complaints affecting Parkinson's disease (PD) patients. Two important studies from the same research group published in the Journal of Parkinson's Disease expand the ...

New drug may treat and limit progression of Parkinson's disease

July 31, 2017
Researchers at Binghamton University have developed a new drug that may limit the progression of Parkinson's disease while providing better symptom relief to potentially hundreds of thousands of people with the disease.

A new insight into Parkinson's disease protein

July 28, 2017
Abnormal clumps of certain proteins in the brain are a prominent feature of Parkinson's and other neurodegenerative diseases, but the role those same proteins might play in the normal brain has been unknown.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.