Scientists discover key player in molecular machinery controlling iron availability

April 1, 2014 by Elizabeth Cooney, Harvard Medical School
Ferritin with stored iron (red structure with blue spheres) is delivered by NCOA4 (green), the newly characterized autophagy receptor for ferritin, into a double-membrane autophagosome undergoing fusion with a lysosome. The fused autophagosome-lysosome (autophagolysosome) degrades ferritin leading to release of iron (small blue spheres) to be utilized by the cell. Credit: Eric D. Smith and Joseph D. Mancias

(Medical Xpress)—Iron is critical for cellular health. Too little means the cell can't make essential proteins that require iron for their functions, but too much can be toxic.

Scientists have been studying how cells achieve iron homeostasis—the happy medium between too little and too much of this valuable metal. Now research from Harvard Medical School, Dana-Farber Cancer Institute and Beth Israel Deaconess Medical Center has revealed the role of autophagy in this iron-balancing act, a process that is also known to be critical in cancer and neurodegeneration. This research team discovered a protein that ensures delivery of iron cargo to the cellular recycling factory.

These findings are published March 30 in Nature.

The lysosome is a recycling organelle within the cell that degrades material when the cell's needs change. When are too high, a major iron buffer called ferritin forms a proteinaceous cage around iron molecules, protecting the cell from unwanted oxidative damage promoted by free iron. But when iron levels are too low, the ferritin cage travels to the lysosome, which in turn breaks down the cage and releases iron to the cell.

Delivering iron to the lysosome happens through a process called autophagy, which means "self-eating." Molecules within the cell are swallowed up by double-membrane structures called autophagosomes and ferried to the lysosome. Sometimes the cargo is damaged and destined for destruction; other times the cargo is selected more specifically to suit the cell's needs (referred to as "selective autophagy").

A growing body of evidence implicates the autophagy process in diseases such as cancer and neurodegeneration. The high levels of autophagy required to support pancreatic cancer growth caught the attention of Joseph Mancias, HMS instructor in at Beth Israel Deaconess Medical Center and lead author of the paper, who was interested in whether this dependence on autophagy was due to the degradation of specific cargo.

Using quantitative proteomics—tools that identify and characterize proteins—Mancias identified a group of proteins that reside in autophagosomes. One of the most robust hits was a protein called NCOA4, short for nuclear receptor co-activator 4. Through more proteomic analysis they found NCOA4 in the autophagosomes of multiple cell lines—not just cancer cells—where it was always bound to ferritin.

These and several experiments adding or removing NCOA4 from cells convinced the researchers that the protein was acting as an autophagy receptor for ferritin in all the cell types they examined. They showed that NCOA4 was required for ferritin to deliver iron to the lysosome.

"There are very few examples where single proteins are selectively delivered to the autophagosome," said Wade Harper, the Bert and Natalie Vallee Professor of Molecular Pathology in the HMS Department of Cell Biology and a co-senior author of the paper. "Ferritin is a critical protein that forms a cage structure, which is utilized for iron storage. While it was known for many years that ferritin was degraded in the lysosome, the molecular mechanisms had not been identified."

When ferritin is degraded in the lysosome, iron is pumped out and subsequently loaded into iron-dependent proteins via a series of iron-assembly complexes.

Although cancer cells were their starting point, the scientists identified a more general cellular mechanism, which appears to function broadly.

"We ended up with an understanding of how ferritin gets to the autophagosomes and the lysosome and how it plays into the larger network of iron-regulatory proteins," said Mancias, who is a member of the Harper Laboratory and the Kimmelman Laboratory. Alec Kimmelman, HMS assistant professor of radiation oncology at Dana-Farber, is co-senior author of the paper.

An imbalance in iron levels has been linked to numerous diseases, including various forms of neurodegeneration, and rare mutations exist in ferritin that affect either iron capture or ferritin trafficking in the axons of nerve . Mancias noted that further studies are needed to understand the extent to which trafficking of ferritin through the autophagosome-lysosome pathway is defective in disease.

Before exploring these and other questions, the scientists' next step is to test in animals what they have found in cell culture to get a fuller, physiological picture of the iron story. "There are many different angles where trafficking of iron could be important," Mancias said.

"Iron is so fundamental that its regulation has to be tightly controlled," said Kimmelman, HMS assistant professor of radiation oncology at Dana-Farber and co-senior author of the paper. "Given how important is to human physiology, it makes sense that we have evolved mechanisms that allow for the coordinated delivery of ferritin to the for degradation. While the identification of an autophagy receptor for ferritin is of great interest, future studies will be needed to elucidate the precise roles of this pathway in normal physiologic as well as pathologic states."

Explore further: Can the body have too much iron?

More information: "Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy." Joseph D. Mancias. Nature (2014) DOI: 10.1038/nature13148. Received 09 September 2013 Accepted 12 February 2014 Published online 30 March 2014

Related Stories

Can the body have too much iron?

January 30, 2014
Many people are aware that low levels of iron in their body can lead anaemia, with symptoms such as fatigue. But few realise that too much iron can result in a potentially fatal condition.

Researchers iron out the link between serum ferritin and diabetes

September 10, 2012
Iron overload increases the risk for insulin resistance and type 2 diabetes; however, the exact mechanisms that link the two are unknown.

Iron status predicts prognosis in patients with T2DM, CAD

November 5, 2013
(HealthDay)—Iron status can independently predict long-term outcomes in patients with type 2 diabetes and coronary artery disease (CAD), according to a study published online Oct. 15 in Diabetes Care.

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Apr 01, 2014
Iron management in the human body requires good levels of Copper, Feroxidase a key enzyme for handling iron is Copper based. There are ~200 copper based enzymes & the levels are not necessarily spread evenly - if there is a deficiency in Ferroxidase as it cannot function without Copper then Iron absorption suffers...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.