Stem cells in circulating blood affect cardiovascular health, study finds

April 23, 2014 by Emily Caldwell
Heart diagram. Credit: Wikipedia

New research suggests that attempts to isolate an elusive adult stem cell from blood to understand and potentially improve cardiovascular health – a task considered possible but very difficult – might not be necessary.

Instead, scientists have found that multiple types of with primitive characteristics circulating in the blood appear to provide the same benefits expected from a stem cell, including the endothelial progenitor cell that is the subject of hot pursuit.

"There are people who still dream that the prototypical progenitors for several components of the cardiovascular tree will be found and isolated. I decided to focus the analysis on the whole nonpurified cell population – the blood as it is," said Nicanor Moldovan, senior author of the study and a research associate professor of cardiovascular medicine at The Ohio State University.

"Our method determines the contributions of all that serve the same function that an endothelial progenitor cell is supposed to. We can detect the presence of those cells and their signatures in a clinical sample without the need to isolate them."

The study is published in the journal PLOS ONE.

Stem cells, including the still poorly understood , are sought-after because they have the potential to transform into many kinds of cells, suggesting that they could be used to replace damaged or missing cells as a treatment for multiple diseases.

By looking at gene activity patterns in blood, Moldovan and colleagues concluded that many cell types circulating throughout the body may protect and repair blood vessels – a key to keeping the heart healthy.

The scientists also found that several types of blood cells retain so-called "primitive" properties. In this context, primitive is positive because these cells are the first line of defense against an injury and provide a continuous supply of repair tissue either directly or by telling local cells what to do.

By comparing gene activation patterns with the study blood donors' health status, the research showed which in blood are associated with such problems as and inflexible blood vessels.

In physicians' hands, this analysis could be used to diagnose certain diseases, monitor the effects of some treatments and determine a cardiovascular patient's prognosis. Further analysis also could help explain how primitive properties in cells, which decrease as humans age, reduce the body's protective and repairing resources.

At the start of this work, the research group proposed a method intended to physically isolate an endothelial progenitor cell candidate. When the evidence didn't support their hypothesis, they adjusted to a systems biology approach and decided to "keep the whole soup" of blood for analysis instead, said Moldovan, an investigator in the Davis Heart and Lung Research Institute and a member of the Center for Regenerative Medicine and Cell-Based Therapies at Ohio State.

The researchers analyzed gene activity, or expression, in the blood cells at an early point in the process – at the messenger RNA (mRNA) level, before proteins are made. Based on previous studies that have helped identify markers that indicate whether cells are primitive or mature, they narrowed the search to detect mRNA for 45 genes in the blood cells.

Using the bioinformatics principle of "guilt-by-association" to analyze the massive amounts of data, "we let those genes that participate in a common function or that share a common structure to show themselves up objectively in the data," he said.

The sorting produced clusters of genes that were further analyzed to identify their purpose. The genes aggregated into two modules, and the researchers zeroed in on a module in which a total of 15 primitive and cardiovascular genes showed a clear connection.

An initial finding countered conventional wisdom about embryonic-level primitive cells: It's thought by some scientists that these types of cells cannot exist in bone marrow, and thus in the adult blood. But this analysis detected embryonic stemness genes "constantly and in all samples we looked at," Moldovan said.

The blood samples came from two groups of human research participants: 26 healthy volunteers and 20 patients with a diagnosis of high blood pressure. Blood from healthy people helped define the cardiovascular-relevant module – a gene profile of cardiac health that was then compared to characteristics of gene behavior in patients with hypertension.

To determine the physiological significance of the clustered primitive and cardiovascular genes, researchers compared their expression patterns to four patient measures: age, a measure of vascular stiffness (healthy vessels are flexible, not stiff), blood pressure and body mass index (BMI). The correlation pattern suggested that higher expression of these genes was linked to younger age, more flexible vessels and lower blood pressure.

"This means the genes in this module are protective against high blood pressure and vascular stiffness, which are related," Moldovan said. "And they reflect a property of blood that is being lost in time, as you would expect from progenitor cells. They have a protective and presumably repairing function, which diminishes with age."

In women, a higher BMI was associated with higher expression of these genes, which Moldovan said might help explain the overweight paradox – the apparently protective role of a few extra pounds in a variety of medical conditions.

Scientists also compared this gene module to images representing stiffness of human aortas and found similar connections – low expression of these genes was associated with more stiffness in the body's largest artery.

"This is an example of how we intend to apply this in a clinical setting," Moldovan said.

He said that with this comprehensive knowledge about expression patterns of 45 genes in the blood, scientists can now search for the molecules produced by those genes to identify which kinds of blood cells resemble adult – namely, those cells whose genes show that they retain primitive characteristics. He added that, based on other preliminary data, he and colleagues are confident that this gene module can be expanded using the same bioinformatics approach to add new candidate members.

"Our goal is to assess the status of the system of progenitors in the bloodstream in its natural complexity, to understand and anticipate the prognosis of what's going to happen with the patient," Moldovan said. "It requires letting go of the old paradigm of 'cell type' and embracing the more abstract notion of a cluster of genes – a 'metagene'– that associates with and changes as the condition of a patient changes."

Explore further: Molecular signature of heart attack predicts longer-term outcomes

Related Stories

Molecular signature of heart attack predicts longer-term outcomes

April 2, 2014
(Medical Xpress)—A molecular signature seen in blood from patients who are experiencing an acute heart attack may also predict the risk of cardiovascular death over the next few years, Emory researchers have found.

Adult stem cells help build human blood vessels in engineered tissues

October 14, 2013
(Medical Xpress)—Researchers at the University of Illinois at Chicago have identified a protein expressed by human bone marrow stem cells that guides and stimulates the formation of blood vessels.

Researchers present comprehensive 'roadmap' of blood cells

March 26, 2014
Research published online today in Blood, the Journal of the American Society of Hematology, presents an unprecedented look at five unique blood cells in the human body, pinpointing the location of key genetic regulators ...

Stem cell study finds source of earliest blood cells during development

March 21, 2014
Hematopoietic stem cells are now routinely used to treat patients with cancers and other disorders of the blood and immune systems, but researchers knew little about the progenitor cells that give rise to them during embryonic ...

DNA-altering enzyme is essential for blood cell development

June 10, 2013
The expression of specific genes is partially dictated by the way the DNA is packed into chromatin, a tightly packed combination of DNA and proteins known as histones. HDAC3 is a chromatin-modifying enzyme that regulates ...

Hundreds of genetic mutations found in healthy blood of a supercentenarian

April 23, 2014
Genetic mutations are commonly studied because of links to diseases such as cancer; however, little is known about mutations occurring in healthy individuals. In a study published online in Genome Research, researchers detected ...

Recommended for you

Could aggressive blood pressure treatments lead to kidney damage?

July 18, 2017
Aggressive combination treatments for high blood pressure that are intended to protect the kidneys may actually be damaging the organs, new research from the University of Virginia School of Medicine suggests.

Quantifying effectiveness of treatment for irregular heartbeat

July 17, 2017
In a small proof-of-concept study, researchers at Johns Hopkins report a complex mathematical method to measure electrical communications within the heart can successfully predict the effectiveness of catheter ablation, the ...

Concerns over side effects of statins stopping stroke survivors taking medication

July 17, 2017
Negative media coverage of the side effects associated with taking statins, and patients' own experiences of taking the drugs, are among the reasons cited by stroke survivors and their carers for stopping taking potentially ...

Study discovers anticoagulant drugs are being prescribed against safety advice

July 17, 2017
A study by researchers at the University of Birmingham has shown that GPs are prescribing anticoagulants to patients with an irregular heartbeat against official safety advice.

Protein may protect against heart attack

July 14, 2017
DDK3 could be used as a new therapy to stop the build-up of fatty material inside the arteries

Heart study finds faulty link between biomarkers and clinical outcomes

July 14, 2017
Surrogate endpoints (biomarkers), which are routinely used in clinical research to test new drugs, should not be trusted as the ultimate measure to approve new health interventions in cardiovascular medicine, according to ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.