Team reprograms blood cells into blood stem cells in mice

April 24, 2014, Children's Hospital Boston

Researchers at Boston Children's Hospital have reprogrammed mature blood cells from mice into blood-forming hematopoietic stem cells (HSCs), using a cocktail of eight genetic switches called transcription factors. The reprogrammed cells, which the researchers have dubbed induced HSCs (iHSCs), have the functional hallmarks of HSCs, are able to self-renew like HSCs, and can give rise to all of the cellular components of the blood like HSCs.

The findings mark a significant step toward one of the most sought-after goals of regenerative medicine: the ability to produce HSCs suitable for hematopoietic stem cell transplantation (HSCT) from other cell types, in particular more mature or differentiated cells.

The research team, led by Derrick J. Rossi, PhD, of Boston Children's Program in Cellular and Molecular Medicine, reported their work today online in the journal Cell.

HSCs are the basic starting material for HSCTs, regardless of their source (bone marrow, umbilical cord blood, peripheral blood). The success of any individual patient's HSCT is tied to the number of HSCs available for transplant: the more cells, the more likely the transplant will take hold. However, HSCs are quite rare.

"HSCs only comprise about one in every 20,000 cells in the bone marrow," says Rossi. "If we could generate autologous HSCs from a patient's other cells, it could be transformative for transplant medicine and for our ability to model diseases of blood development."

In their study, Rossi and his collaborators, including lead author Jonah Riddell, PhD, screened gene expression in 40 different types of blood and blood progenitor cells from mice. From this screen they identified 36 transcription factors—genes that control when other genes are turned on and off—that are expressed exclusively in HSCs, not in cells that arise from them.

"Blood cell production invariably goes in one direction: from , to progenitors, to mature effector cells," Rossi explains. "We wanted to reverse the process and derive HSCs from differentiated blood cells using transcription factors that we found were specific to HSCs."

In a series of mouse transplantation experiments, Rossi's team found that six—Hlf, Runx1t1, Pbx1, Lmo2, Zfp37 and Prdm5—of the 36 factors, plus two additional factors not originally identified in their screen—Mycn and Meis1—were sufficient to robustly reprogram two kinds of blood progenitor cells (pro/pre B cells and common myeloid ) into iHSCs.

Rossi's team reprogrammed their source cells by exposing them to viruses containing the genes for all eight factors and a molecular switch that turned the factor genes on in the presence of doxycycline. They then transplanted the exposed cells into recipient mice and activated the genes by giving the mice doxycycline.

The resulting iHSCs were capable of generating the entire blood cell repertoire in the transplanted mice, showing that they had gained the ability to differentiate into all blood lineages. Stem cells collected from those recipients were themselves capable of reconstituting the blood of secondary transplant recipients, proving that the eight-factor cocktail could instill the capacity for self-renewal—a hallmark property of HSCs.

Taking the work a step further, Rossi's team treated mature mouse myeloid cells with the same eight-factor cocktail. Again, when transplanted into mice, iHSCs were generated that produced all of the blood lineages and could regenerate the blood of secondary transplant recipients.

Stuart Orkin, MD, one of the leaders of Dana-Farber/Boston Children's Cancer and Blood Disorders Center and a co-author on the paper, notes that the use of mice as a kind of reactor for reprogramming marks a novel direction in HSC research.

"In the blood research field, no one has the conditions to expand HSCs in the tissue culture dish," he says. "Instead, by letting the reprogramming occur in mice, Rossi takes advantage of the signaling and environmental cues HSCs would normally experience."

Orkin adds that iHSCs are nearly indistinguishable from normal HSCs at the transcriptional level. "The iHSCs have a gene expression pattern remarkably similar to HSCs."

The current findings are far from translation to the transplantation clinic. Still to be answered are the precise contribution of each of the eight factors to the reprogramming process and whether approaches that do not rely on viruses and can have similar success. It also is not yet known whether the same results can be achieved using human cells or whether other, non-blood cells can be reprogrammed to iHSCs.

But with these results Rossi's team has already succeeded where many other attempts have failed. And iHSCs in their current state constitute a promising springboard for better understanding of HSC biology and development.

"Our data show that the functional and molecular identity of HSCs can be tapped with relatively few factors using the paradigm of cellular reprogramming in a manner similar to the generation of induced pluripotent stem ," Rossi says.

Explore further: Study unlocks origins of blood stem cells

Related Stories

Study unlocks origins of blood stem cells

December 9, 2011
A research team led by Nancy Speck, PhD, professor of Cell and Developmental Biology at the Perelman School of Medicine at the University of Pennsylvania, has discovered a molecular marker for the immediate precursors of ...

Stem cell study finds source of earliest blood cells during development

March 21, 2014
Hematopoietic stem cells are now routinely used to treat patients with cancers and other disorders of the blood and immune systems, but researchers knew little about the progenitor cells that give rise to them during embryonic ...

Stem cells central to pathogenesis of mature lymphoid tumors

August 15, 2011
New research suggests that blood stem cells can be involved in the generation of leukemia, even when the leukemia is caused by the abnormal proliferation of mature cells. The study, published by Cell Press in the August 16th ...

Out of body experience for stem cells may lead to more successful transplants

August 4, 2011
New research finds that growing blood stem cells in the laboratory for about a week may help to overcome one of the most difficult roadblocks to successful transplantation, immune rejection. The study, published by Cell ...

Blood stem cells age at the unexpected flip of a molecular switch

October 20, 2013
Scientists report in Nature they have found a novel and unexpected molecular switch that could become a key to slowing some of the ravages of getting older as it prompts blood stem cells to age.

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.