Viral 'parasites' may play a key role in the maintenance of cell pluripotency

April 28, 2014

In a study published in Nature Genetics, scientists from the RIKEN Center for Life Science Technologies in Japan, in collaboration with the RIKEN Center for Integrative Medical Sciences, the University of Copenhagen and the Joint Genome Institute (Walnut Creek, California) have discovered that "jumping DNA" known as retrotransposons—viral elements incorporated into the human genome—may play a key role in the maintenance of pluripotency, the ability of stem cells to differentiate into many different types of body cells.

This story is part of a fundamental rethinking taking place in genomic science. In 2009, members of the FANTOM Consortium project reported that an important fraction of mammalian transcriptomes—meaning the RNA transcribed from the genome—consists of transcripts derived from retrotransposon , vestiges of ancient retroviruses from the same family as HIV that have in the past been considered to only parasite the genome. However, the biological function of these "jumping DNA"–associated RNA transcripts remained unknown.

In the current study on embryonic stem (ES) cells and induced pluripotent stem (iPS) cells using four high-throughput methods including cap analysis gene expression (CAGE), the researchers found that thousands of transcripts in stem cells that have not yet been annotated are transcribed from retrotransposons, presumably to elicit nuclear functions. These transcripts were found to be expressed in stem cells, but not . Importantly, the work showed that several of these transcripts are involved in the maintenance of , since degrading several of them using RNA interference caused iPS cells to lose their pluripotency and differentiate.

These transcripts appear to have been recruited, surprisingly both in the human and mouse genome, where they are used to maintain the pluripotency of stem cells. Somehow, organisms including humans appear to have recruited viral elements into their genome in a way that helps to maintain the pluripotency of that allow them to regenerate. Why this is so remains a mystery for future investigation.

Although the results of the study cannot be put directly into application in regenerative medicine, knowing that retrotransposon elements are essential in the transcriptional control of iPS and ES cells is an essential clue for solving the puzzle of how to create better types of cells in future regenerative medicine studies.

"Our work has just begun to unravel the scale of unexpected functions carried out by retrotransposons and their derived transcripts in . We were extremely surprised to learn from our data that what was once considered genetic 'junk', namely ancient retroviruses that were thought to just parasite the genome, are in reality symbiotic elements that work closely with other genes to maintain iPS and ES cells in their undifferentiated state. This is quite different from the image given by textbooks that these genomic elements are junk," explains Dr. Piero Carninci, senior investigator of the study.

Explore further: Retrovirus in the human genome is active in pluripotent stem cells

More information: Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance, DOI: 10.1038/ng.2965

Related Stories

Retrovirus in the human genome is active in pluripotent stem cells

January 23, 2013
A retrovirus called HERV-H, which inserted itself into the human genome millions of years ago, may play an important role in pluripotent stem cells, according to a new study published in the journal Retrovirology by scientists ...

Researchers identify a new gene that is essential for nuclear reprogramming

June 5, 2013
Researchers are still fascinated by the idea of the possibility of reprogramming the cells of any tissue, turning them into cells with the capacity to differentiate into cells of a completely different type— pluripotent ...

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.