Alternative pathways let right and left communicate in early split brains

May 12, 2014
This is a 3D image showing some of the aberrant interhemispheric bundles in a "glass brain" of a subject born without the corpus callosum. In yellow, the aberrant midbrain bundle that connects the right (in blue) and left (in red) brain hemispheres. Credit: Ivanei Bramati (D'Or Institute for Research and Education (IDOR), Rio de Janeiro 22281-032, Brazil).

Humans who lack the corpus callosum, a bundle of 200 million fibers that connect the left and right hemispheres of the brain, have long fascinated physicians, neuroscientists and other curious minds. Now, a group of researchers puts an end to the Sperry's paradox, which describes major differences between individuals born with reduced or absent brain connections and those who acquire this condition later in life.

During the last century, many have undergone a variety of brain surgeries in an attempt to alleviate all sorts of psychiatric maladies, from hysteria and depression (mainly in women) to schizophrenia and epilepsy. Early on, doctors believed that psychiatric patients suffered from aberrant wiring among different brain areas and that cutting the connections between these areas would help patients regain normal brain circuits as well as their mental health. For instance, since the 1940s, several patients with intractable epilepsy have been treated with callosotomy, a surgical procedure that severs part or most of the corpus callosum. Curiously, some individuals are already born without the corpus callosum, a condition known as callosal dysgenesis (CD).

In 1968, the neurobiologist Roger Sperry confirmed that both callosotomized and CD patients have either absent or massively diminished connections between brain hemispheres. However, these two types of patients show a paradoxical difference concerning the transfer of information between the two sides of their brains. While typical callosotomized patients suffer from a disconnection syndrome in which there is minor or no communication between the left and right brain hemispheres, in CD patients, the two hemispheres are in fact able to communicate with each other.

For instance, when an unseen object is held in the right hand and thus recognized by the left hemisphere, both callosotomized and CD individuals can easily name that object verbally, because it is the left hemisphere that most often dominates verbal language. However, when an object is held in the left hand and thus recognized by the right hemisphere, callosotomized patients fail to verbally name the object because the missing corpus callosum prevents the right hemisphere from communicating with the . Conversely, CD patients have no difficulties in naming an unseen object regardless of the hand holding it.

The observation that the corpus callosum is the main connector between earned Roger Sperry the Nobel Prize in 1981, but his own paradoxical discovery that CD patients do not present the classical disconnection syndrome observed in callosotomized patients remained unexplained until now.

In an article entitled "Structural and functional brain rewiring clarifies preserved inter-hemisphere transfer in humans born without the corpus callosum" and published in the Proceedings of the National Academy of Sciences (PNAS), a group of scientists from Rio de Janeiro and Oxford puts an end to Sperry's paradox.

Previous work had led to the hypothesis that a defect in callosal formation would cause the brains of CD patients to create alternative pathways early on in life, but little was known about these potential pathways. The group led by Fernanda Tovar-Moll and Roberto Lent at the D'Or Institute for Research and Education and the Institute of Biomedical Sciences in Rio de Janeiro, Brazil, tested the brains of patients with CD using state of the art functional neuroimaging methods. The researchers were able to identify, morphologically describe and establish the function of two alternative pathways that help compensate for the lack of the . These pathways enable the transfer of complex tactile information between hemispheres, an ability missing in surgically callosotomized patients. Furthermore, by comparing six CD patients with 12 normal individuals, the group was able to demonstrate that CD patients present tactile recognition abilities similar to those observed in controls, indicating a functional role for these newly discovered brain pathways.

The authors believe that the development of alternative pathways results from the brain's ability for long-distance plasticity and occurs in the utero during embryo development, which indicates that connections formed in the human brain early in development can be greatly modified, and most likely by environmental or genetic factors.

These findings will change the way we perceive the mechanisms of plasticity and may pave the way for a better understanding of a number of human disorders resulting from abnormal neuronal connections during embryonic development.

The paper can be found in the online Early Edition of PNAS in the week of May 12, 2014.

Explore further: Neuroscientists find link between agenesis of the corpus callosum and autism

More information: Structural and functional brain rewiring clarifies preserved interhemispheric transfer in humans born without the corpus callosum, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1400806111

Related Stories

Neuroscientists find link between agenesis of the corpus callosum and autism

April 29, 2014
(Medical Xpress)—Building on their prior work, a team of neuroscientists at Caltech now report that rare patients who are missing connections between the left and right sides of their brain—a condition known as agenesis ...

Neuroscientists find normal brain communication in people who lack connections between right, left hemispheres

October 19, 2011
(Medical Xpress) -- Like a bridge that spans a river to connect two major metropolises, the corpus callosum is the main conduit for information flowing between the left and right hemispheres of our brains. Now, neuroscientists ...

Well-connected hemispheres of Einstein's brain may have sparked brilliance

October 4, 2013
(Medical Xpress)—The left and right hemispheres of Albert Einstein's brain were unusually well connected to each other and may have contributed to his brilliance, according to a new study conducted in part by Florida State ...

Left hand - right hand, premature babies make the link

April 12, 2012
From the 31st week of pregnancy, preterm babies are capable of recognizing with one hand an object they have already explored with the other. This ability, known as "intermanual transfer", has been demonstrated in premature ...

Regeneration after a stroke requires intact communication channels between the two halves of the brain

November 21, 2011
(Medical Xpress) -- The structure of the corpus callosum, a thick band of nerve fibres that connects the two halves of the brain with each other and in this way enables the rapid exchange of information between the left and ...

Network analysis sheds new light on the abnormal brain connectivity responsible for a common genetic cause of autism

February 28, 2013
Combining hospital MRIs with the mathematical tool known as network analysis, a group of researchers at UC San Francisco and UC Berkeley have mapped the three-dimensional global connections within the brains of seven adults ...

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.