'Bystander' chronic infections thwart development of immune cell memory

May 15, 2014

Studies of vaccine programs in the developing world have revealed that individuals with chronic infections such as malaria and hepatitis tend to be less likely to develop the fullest possible immunity benefits from vaccines for unrelated illnesses. The underlying mechanisms for that impairment, however, are unclear, and distinguishing these so-called "bystander" effects on priming the immune system to fight future assaults versus development of immunological memory has been challenging.

A team from the Perelman School of Medicine at the University of Pennsylvania found that chronic bystander viral or – which are models for human infections like hepatitis, malaria, and parasitic worms – impaired the development of memory T cells in mouse models of long-term infection.

The effect of bystander infections also extended beyond mice. The researchers generated signatures of transcribed genes of cytomegalovirus-specific T cells from people with chronic hepatitis C infection and healthy controls. The gene-expression profiles of these two groups showed a clear impact of bystander chronic infection on T cells, including a difference in expression of many key T-cell memory-related genes. The findings are published this week in Immunity.

"Co-infections can result in poor immunity for other invading microbes and also vaccines," says senior author E. John Wherry, PhD, director, Institute for Immunology and associate professor of Microbiology. "We now understand one of the main reasons: failure to develop capable of responding upon new infections."

Immune memory, the hallmark of protective immunity against intracellular pathogens, is what keeps humans from being reinfected by a microbe to which they have already been exposed. Some are long-lived and active against whatever they were originally triggered by.

"If a person in the developing world gets a vaccine, and they harbor unrelated infections, such as malaria, tuberculosis, hepatitis B or C, and other parasitic infections, will this person have effective immune memory to the vaccine?" asks Wherry. "Our study has major relevance for applying vaccines in the developing world where co-infections might radically alter the type and quality of immunity generated by vaccines."

Wherry cites vaccine campaigns for rotavirus and polio virus in the developing world in which people who were vaccinated had only 50 percent efficacy compared to 80 to 90 percent in the developed world for the same . Vaccine efficacy is the incidence of people who are vaccinated and get disease versus an unvaccinated control group.

The effects of bystander infection on immune memory cell development seen in the current study were independent of initial priming of the immune system by other pathogens and were associated with a molecular signature of . Chronic inflammation reduced the number of bystander T cells, their memory development, and their ability to protect from a challenge infection.

The team concluded that exposure to prolonged bystander inflammation impairs the transition of effector T cells to T cells. In other words, bystander prevent the critical ability of the immune response to "stand down" and preserve responsive cells for future encounters with the same infection.

These data have important implications for vaccines for the where co-infections are common and also for vaccines and immune therapies in patients with . Specifically, working to treat co-infections—via anti-parasite treatment in developing countries, for example—prior to vaccines or treatment with anti-inflammatory agents at the right times may improve long-term immunity in some settings.

Explore further: Strengthening fragile immune memories to fight chronic infections

More information: Cell Reports, Hong et al.: "Path to the clinic: Assessment of iPSC-based cell therapies in vivo in a non-human primate model." www.cell.com/cell-reports/abst … 2211-1247(14)00306-4

Related Stories

Strengthening fragile immune memories to fight chronic infections

August 18, 2011
After recovering from the flu or another acute infection, your immune system is ready to react quickly if you run into the same virus again. White blood cells called memory T cells develop during the infection and help the ...

Patient, heal thyself: Solution to personalised treatment for chronic infections could lie in patient's own blood

September 20, 2013
A recent discovery by scientists at A*STAR's Singapore Institute for Clinical Sciences (SICS), in close collaboration with researchers at the Singapore Immunology Network (SIgN), provides hope for a new personalised treatment ...

Protein serves as a natural boost for immune system fight against tumors

January 30, 2014
Substances called adjuvants that enhance the body's immune response are critical to getting the most out of vaccines. These boosters stimulate the regular production of antibodies—caused by foreign substances in the body—toxins, ...

How rotavirus infection accelerates autoimmune diabetes in a mouse model

March 27, 2014
A combination of genetic predisposition and environmental factors is believed to cause autoimmune (type 1) diabetes. A study published on March 27th in PLOS Pathogens gets at the mechanisms by which rotavirus infection contributes ...

Immune finding aids quest for vaccines to beat tropical infections

March 14, 2013
Scientists are a step closer to developing vaccines for a range of diseases that affect 200 million people, mainly in tropical south-east Asia, Africa and Central America.

Recommended for you

Study sheds light on how body may detect early signs of cancer

July 26, 2017
Fresh insights into how cells detect damage to their DNA - a hallmark of cancer - could help explain how the body keeps disease in check.

How genetically engineered viruses develop into effective vaccines

July 26, 2017
Lentiviral vectors are virus particles that can be used as a vaccine to stimulate the immune system to fight against specific pathogens. The vectors are derived from HIV, rendered non-pathogenic, and then engineered to carry ...

Does your child really have a food allergy?

July 24, 2017
(HealthDay)—Many people misunderstand what food allergies are, and even doctors can be confused about how to best diagnose them, suggests a new report from the American Academy of Pediatrics.

Genetic immune deficiency could hold key to severe childhood infections

July 18, 2017
A gene mutation making young children extremely vulnerable to common viruses may represent a new type of immunodeficiency, according to a University of Queensland researcher.

What are the best ways to diagnose and manage asthma?

July 18, 2017
What are the best ways to diagnose and manage asthma in adults? This can be tricky because asthma can stem from several causes and treatment often depends on what is triggering the asthma.

Large multi-ethnic study identifies many new genetic markers for lupus

July 17, 2017
Scientists from an international consortium have identified a large number of new genetic markers that predispose individuals to lupus.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.