Companion chemical greatly improves the effectiveness of targeted copper therapy for Menkes disease

May 16, 2014
Figure 1: Positron emission tomography (PET) imaging reveals that copper accumulates more readily in the brain of the Menkes mouse model when combined with disulfiram (right) compared to no disulfiram pretreatment (left). Credit: Reproduced from Ref. 1 © 2014 Society of Nuclear Medicine and Molecular Imaging

Copper is essential for human health, and is critical to the function of a number of enzymes in the body. This important role is highlighted by Menkes disease—an inherited syndrome caused by a genetic mutation that prevents proper absorption of dietary copper in the intestine, leading to profound developmental and neurological abnormalities.

Yasuyoshi Watanabe and colleagues from the RIKEN Center for Life Science Technologies, in collaboration with researchers from Osaka City University, have now demonstrated the clinical potential of a chemical agent that facilitates safe copper delivery for the treatment of Menkes disease.

The researchers used an imaging technique called (PET) to three-dimensionally reconstruct the migration of copper in the body using a radioactive isotope tracer, copper-64 (64Cu). Watanabe's team had previously used this tracer to track the localization of anticancer drugs, an approach that seemed ideal for studying Menkes disease. "It was natural to use 64Cu to directly follow the fate of taken up into the body," says Watanabe.

A major issue with copper treatment is ensuring that it reaches target organs such as the brain without becoming trapped in the kidneys, where it can cause severe toxicity. Studies using a mouse model of Menkes disease have shown that copper combined with a compound known as disulfiram results in improved therapeutic effects. Watanabe and his colleagues used PET imaging to determine how this occurs.

The researchers found that without disulfiram, copper generally failed to penetrate the vasculature of the brain in the Menkes mouse model, and instead concentrated in the liver and kidneys. In contrast, pretreatment with disulfiram markedly reduced accumulation of 64Cu in the kidneys and increased levels in the brain roughly fourfold (Fig. 1). Importantly, the PET technique used in the study was able to achieve the high resolution needed to precisely measure 64Cu penetration into the interior of the brain. "This could offer a useful optimization method for dose-finding in therapeutic copper supplementation," says Watanabe.

Based on the promising performance of copper–disulfiram treatment in this and prior animal studies, Watanabe anticipates moving forward with human clinical trials. He expects the 64Cu tracer to be a valuable tool for this next stage of testing, but also intends to use the imaging strategy to characterize shifts in copper distribution under normal physiological conditions. "We plan to study copper transport proteins and dynamics in the body before and after energy consumption, such as intense exercise or hard brain work," says Watanabe.

Explore further: Using PET scanning to evaluate therapies of Menkes disease

More information: Nomura, S., Nozaki, S., Hamazaki, T., Takeda, T., Ninomiya, E., Kudo, S., Hayashinaka, E., Wada, Y., Hiroki, T., Fujisawa, C. et al. PET imaging analysis with 64Cu in disulfiram treatment for aberrant copper biodistribution in Menkes disease mouse model. The Journal of Nuclear Medicine 55, 845–851 (2014). DOI: 10.2967/jnumed.113.131797

Related Stories

Using PET scanning to evaluate therapies of Menkes disease

March 26, 2014
Scientists at the RIKEN Center for Life Science Technologies have used PET imaging to visualize the distribution in the body of copper, which is deregulated in Menkes disease, a genetic disorder, using a mouse model. This ...

A bad penny: Cancer's thirst for copper can be targeted

April 9, 2014
Drugs used to block copper absorption for a rare genetic condition may find an additional use as a treatment for certain types of cancer, researchers at Duke Medicine report.

Discovery helps explain how children develop rare, fatal disease

April 30, 2013
One of 100,000 children is born with Menkes disease, a genetic disorder that affects the body's ability to properly absorb copper from food and leads to neurodegeneration, seizures, impaired movement, stunted growth and, ...

Copper on the brain

May 27, 2013
(Medical Xpress)—The value of copper has risen dramatically in the 21st century as many a thief can tell you, but in addition to the thermal and electrical properties that make it such a hot commodity metal, copper has ...

Copper intake makes tumors breathe

November 14, 2013
Copper imbalances have been associated with a number of pathological conditions, including cancer. Publishing in PNAS scientists at EPFL have found that copper in drinking water – given at the maximum levels permitted in ...

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.