Delving deep into the brain

May 1, 2014 by Anne Trafton
A series of three MRI images (top row) shows how dopamine concentrations change over time in the brain's ventral striatum. Credit: Christine Daniloff/MIT, with images courtesy of the researchers

Launched in 2013, the national BRAIN Initiative aims to revolutionize our understanding of cognition by mapping the activity of every neuron in the human brain, revealing how brain circuits interact to create memories, learn new skills, and interpret the world around us.

Before that can happen, neuroscientists need new tools that will let them probe the more deeply and in greater detail, says Alan Jasanoff, an MIT associate professor of biological engineering. "There's a general recognition that in order to understand the brain's processes in comprehensive detail, we need ways to monitor neural function deep in the brain with spatial, temporal, and functional precision," he says.

Jasanoff and colleagues have now taken a step toward that goal: They have established a technique that allows them to track neural communication in the brain over time, using magnetic resonance imaging (MRI) along with a specialized molecular sensor. This is the first time anyone has been able to map neural signals with high precision over large brain regions in living animals, offering a new window on brain function, says Jasanoff, who is also an associate member of MIT's McGovern Institute for Brain Research.

His team used this molecular imaging approach, described in the May 1 online edition of Science, to study the in a region called the ventral striatum, which is involved in motivation, reward, and reinforcement of behavior. In future studies, Jasanoff plans to combine dopamine imaging with functional MRI techniques that measure overall brain activity to gain a better understanding of how influence neural circuitry.

"We want to be able to relate dopamine signaling to other neural processes that are going on," Jasanoff says. "We can look at different types of stimuli and try to understand what dopamine is doing in different brain regions and relate it to other measures of ."

Tracking dopamine

Dopamine is one of many neurotransmitters that help neurons to communicate with each other over short distances. Much of the brain's dopamine is produced by a structure called the (VTA). This dopamine travels through the mesolimbic pathway to the ventral striatum, where it combines with sensory information from other parts of the brain to reinforce behavior and help the brain learn new tasks and motor functions. This circuit also plays a major role in addiction.

To track dopamine's role in , the researchers used an MRI sensor they had previously designed, consisting of an iron-containing protein that acts as a weak magnet. When the sensor binds to dopamine, its magnetic interactions with the surrounding tissue weaken, which dims the tissue's MRI signal. This allows the researchers to see where in the brain dopamine is being released. The researchers also developed an algorithm that lets them calculate the precise amount of dopamine present in each fraction of a cubic millimeter of the ventral striatum.

After delivering the MRI sensor to the ventral striatum of rats, Jasanoff's team electrically stimulated the mesolimbic pathway and was able to detect exactly where in the dopamine was released. An area known as the nucleus accumbens core, known to be one of the main targets of dopamine from the VTA, showed the highest levels. The researchers also saw that some dopamine is released in neighboring regions such as the ventral pallidum, which regulates motivation and emotions, and parts of the thalamus, which relays sensory and motor signals in the brain.

Each dopamine stimulation lasted for 16 seconds and the researchers took an MRI image every eight seconds, allowing them to track how dopamine levels changed as the neurotransmitter was released from cells and then disappeared. "We could divide up the map into different regions of interest and determine dynamics separately for each of those regions," Jasanoff says.

He and his colleagues plan to build on this work by expanding their studies to other parts of the brain, including the areas most affected by Parkinson's disease, which is caused by the death of -generating cells. Jasanoff's lab is also working on sensors to track other neurotransmitters, allowing them to study interactions between neurotransmitters during different tasks.

Explore further: Deep brain stimulation for obsessive-compulsive disorder releases dopamine in the brain

More information: "Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling," by T. Lee et al. Science, 2014.

Related Stories

Deep brain stimulation for obsessive-compulsive disorder releases dopamine in the brain

April 30, 2014
Some have characterized dopamine as the elixir of pleasure because so many rewarding stimuli - food, drugs, sex, exercise - trigger its release in the brain. However, more than a decade of research indicates that when drug ...

Dopamine and hippocampus

April 3, 2014
Bruno Giros, PhD, a researcher at the Douglas Mental Health University Institute and a professor in the Department of Psychiatry at McGill University, has demonstrated, for the first time, the role that dopamine plays in ...

Promise of a bonus counter-productive in brains with high dopamine levels

February 14, 2014
Some people perform better and others worse when promised a high bonus. Brain researcher Esther Aarts of the Donders Institute in Nijmegen has demonstrated for the first time that the amount of dopamine in the brain plays ...

Researchers find cocaine disinhibits natural inhibitor allowing continued release of dopamine

September 27, 2013
(Medical Xpress)—A team of researchers working at the University of Geneva and Geneva University Hospital have found during experiments with test mice, that injections of cocaine can cause naturally occurring inhibiting ...

MRI reveals genetic activity

March 25, 2014
Doctors commonly use magnetic resonance imaging (MRI) to diagnose tumors, damage from stroke, and many other medical conditions. Neuroscientists also rely on it as a research tool for identifying parts of the brain that carry ...

Two dimensions of value: Dopamine neurons represent reward but not aversiveness

August 1, 2013
To make decisions, we need to estimate the value of sensory stimuli and motor actions, their "goodness" and "badness." We can imagine that good and bad are two ends of a single continuum, or dimension, of value. This would ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.