Researchers restore grasp ability in paralyzed hand

May 20, 2014, Newcastle University

(Medical Xpress)—For the first time scientists have been able to restore the ability to grasp with a paralysed hand using spinal cord stimulation.

There is currently no cure for upper limb paralysis, where there has been damage to the nerves which send messages to the muscles from the brain, such as happens after a stroke or .

But now Wellcome Trust-funded researchers at Newcastle University, working with macaque monkeys, have shown that by connecting the brain to a computer and then the computer to the , it is possible to restore movement. The discovery opens up the possibility of new treatments within the next few years which could help stroke victims or those with regain some movement in their arms and hands.

Spinal cord stimulation

The team first trained the primates to grasp and pull a spring-loaded handle. The monkeys were then temporarily paralysed, using a drug that wore off after about two hours. During that time the monkey had no movement in their hand and was unable to grasp, even though most of the brain was functioning normally. But when the stimulation circuit was switched on the monkey was able to control its own arm and pull the handle.

The work is published today in the journal Frontiers in Neuroscience. A video shows the technique in action.

Dr Andrew Jackson, Research Fellow at Newcastle University and Dr Jonas Zimmermann, now at Brown University, Providence, Rhode Island, USA, led the research.

Dr Jackson said: "When someone has a damaged motor cortex or spinal cord the problem is that the signal from the brain to the muscles isn't getting through. What we have done here is restore that connection, to allow the signal telling the hand to move to reach the spinal cord. By exploiting surviving neural networks below the injury, we can activate natural actions like grasping using just a few stimulation sites. This is the first time that anyone has done that."

The next stage will be to further develop the technology to eventually have a small implant for use in patients that can then form the link between the brain and the muscles.

Restoring hand movement

Dr Jackson added: "Much of the technology we used for this is already being used separately in patients today, and has been proven to work. We just needed to bring it all together.

"I think within five years we could have an implant which is ready for people. And what is exciting about this technology is that it would not just be useful for people with spinal injuries but also people who have suffered from a stroke and have impaired movement due to that. There are some technical challenges which we have to overcome, as there is with any new technology, but we are making good progress."

Dr Zimmermann said: "Animal studies such as ours are necessary to demonstrate the feasibility and safety of procedures before they can be tried in human patients, to minimise risk and maximise chance of successful outcomes."

Dr John Williams, Head of Neuroscience and Mental Health at the Wellcome Trust said: "Being able to restore dexterous hand movements to patients paralysed by stroke or spinal cord injury would be a huge improvement to their independence and quality of life. The Newcastle University team's research, which harnesses the intact portions of the nervous system and creates new artificial connections, is at the cutting edge of neuro and rehabilitation science. When used alone or in combination with other rehabilitation approaches, this technique could lead to significant improvements in hand function and transform the lives of paralysed patients."

Explore further: Isolating the circuits that control voluntary movement

More information: Zimmermann JB and Jackson A (2014) "Closed-loop control of spinal cord stimulation to restore hand function after paralysis." Front. Neurosci. 8:87. DOI: 10.3389/fnins.2014.00087

Related Stories

Isolating the circuits that control voluntary movement

May 7, 2014
(Medical Xpress)—Extraordinarily complex networks of circuits that transmit signals from the brain to the spinal cord control voluntary movements. Researchers have been challenged to identify the controlling circuits, but ...

Restoring paretic hand function via an artificial neural connection bridging spinal cord injury

April 11, 2013
Functional loss of limb control in individuals with spinal cord injury or stroke can be caused by interruption of the neural pathways between brain and spinal cord, although the neural circuits located above and below the ...

Getting a grip on hand function: Researchers discover spinal cord circuit that controls our ability to grasp

April 10, 2013
Dalhousie neurosurgeon and scientist Dr. Rob Brownstone and postdoctoral fellow Dr. Tuan Bui have identified the spinal cord circuit that controls the hand's ability to grasp. This breakthrough finding opens the door to the ...

Monkey think, monkey do: experiment could lead to paralysis cure

February 18, 2014
Scientists working on a paralysis cure said Tuesday they had demonstrated how a monkey can use only its thoughts, transferred by electrodes, to manipulate a sleeping fellow primate's arm to do its bidding.

Hand use improved after spinal cord injury with noninvasive stimulation

November 29, 2012
By using noninvasive stimulation, researchers were able to temporarily improve the ability of people with spinal cord injuries to use their hands. The findings, reported on November 29th in Current Biology, a Cell Press publication, ...

Hope for paraplegic patients

May 16, 2014
People with severe injuries to their spinal cord currently have no prospect of recovery and remain confined to their wheelchairs. Now, all that could change with a new treatment that stimulates the spinal cord using electric ...

Recommended for you

Research shows signalling mechanism in the brain shapes social aggression

October 19, 2018
Duke-NUS researchers have discovered that a growth factor protein, called brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TrkB) affects social dominance in mice. The research has ...

Scientists discover the region of the brain that registers excitement over a preferred food option

October 19, 2018
At holiday buffets and potlucks, people make quick calculations about which dishes to try and how much to take of each. Johns Hopkins University neuroscientists have found a brain region that appears to be strongly connected ...

How clutch molecules enable neuron migration

October 19, 2018
The brain can discriminate over 1 trillion odors. Once entering the nose, odor-related molecules activate olfactory neurons. Neuron signals first accumulate at the olfactory bulb before being passed on to activate the appropriate ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Good spatial memory? You're likely to be good at identifying smells too

October 19, 2018
People who have better spatial memory are also better at identifying odors, according to a study published this week in Nature Communications. The study builds on a recent theory that the main reason that a sense of smell ...

Weight loss success linked with active self-control regions of the brain

October 18, 2018
New research suggests that higher-level brain functions have a major role in losing weight. In a study among 24 participants at a weight-loss clinic, those who achieved greatest success in terms of weight loss demonstrated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.