Researchers identify key mechanism in metabolic pathway that fuels cancers

May 22, 2014, UT Southwestern Medical Center
Researchers identify key mechanism in metabolic pathway that fuels cancers
Ralph DeBerardinis, M.D., Ph.D. Credit: UT Southwestern

In a breakthrough discovery at the Children's Medical Center Research Institute at UT Southwestern (CRI), a research team led by Ralph DeBerardinis, M.D., Ph.D., has taken a significant step in cracking the code of an atypical metabolic pathway that allows certain cancerous tumors to thrive, providing a possible roadmap for defeating such cancers.

Published in Cell Reports, and following up on Dr. DeBerardinis' landmark finding in 2011, this most recent discovery identifies the triggering mechanism that plays a key role in causing a series of energy-generating chemical reactions known as the Krebs cycle to run in reverse.

"With this finding, we have learned there are particular enzymes that work together to enable the reverse pathway to function, much like the tiny gears that turn in opposite directions to power a mechanical clock," said Dr. DeBerardinis, director of CRI's Genetic and Metabolic Disease Program and associate professor in the Department of Pediatrics and the Eugene McDermott Center for Human Growth and Development at UT Southwestern Medical Center.

The identification of the mechanism could provide a future target for drugs that would attack tumors relying upon the reverse pathway for sustenance and growth. Tumors of this type, often found in the brain, lungs and kidneys, tend to be difficult for oncologists to treat because cells using the atypical pathway seem to resist existing treatments like chemotherapy.

"Prior to this discovery, we didn't have enough information about how to tap into the reverse without disrupting the pathways that were operating in the typical, forward manner," said Dr. DeBerardinis, senior author of the study. "We now believe there is a specific enzyme critical to the reverse pathway that can be deleted without impairing normal function. If we can eliminate that enzyme, we may be able to starve tumors of their supply of building blocks for growth."

Explore further: Tumor-specific pathway identified

Related Stories

Tumor-specific pathway identified

November 22, 2011
A research team led by UT Southwestern Medical Center scientists has identified an atypical metabolic pathway unique to some tumors, possibly providing a future target for drugs that could reduce or halt the spread of cancer.

Scientists find potential loophole in pancreatic cancer defenses

March 27, 2013
Dana-Farber Cancer Institute scientists and colleagues have discovered that pancreatic cancer cells' growth and spread are fueled by an unusual metabolic pathway that someday might be blocked with targeted drugs to control ...

Study reveals how cancer cells thrive in oxygen-starved tumors

February 4, 2014
A new study identifies the molecular pathway that enables cancer cells to grow in areas of a tumor where oxygen levels are low, a condition called hypoxia.

Link between colon cancer and metabolism identified

May 13, 2014
More than 60 years ago Otto Warburg recognized that cancer cells differ from normal cells in the metabolic pathway they use for the oxidation of sugar. Rather than the typical series of oxidative steps that take place in ...

Cancer stem cells linked to drug resistance

April 20, 2014
Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered a molecule, ...

Breakthrough discoveries on cellular regeneration seek to turn back the body's clock

November 7, 2013
Two groups of scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) have made complementary discoveries that break new ground on efforts to turn back the body's clock on cellular activity, ...

Recommended for you

New approach attacks 'undruggable' cancers from the outside in

January 23, 2018
Cancer researchers have made great strides in developing targeted therapies that treat the specific genetic mutations underlying a patient's cancer. However, many of the most common cancer-causing genes are so central to ...

Scientists block the siren call of two aggressive cancers

January 23, 2018
Aggressive cancers like glioblastoma and metastatic breast cancer have in common a siren call that beckons the bone marrow to send along whatever the tumors need to survive and thrive.

'Hijacker' drives cancer in some patients with high-risk neuroblastoma

January 23, 2018
Researchers have identified mechanisms that drive about 10 percent of high-risk neuroblastoma cases and have used a new approach to show how the cancer genome "hijacks" DNA that regulates other genes. The resulting insights ...

Enzyme inhibitor combined with chemotherapy delays glioblastoma growth

January 23, 2018
In animal experiments, a human-derived glioblastoma significantly regressed when treated with the combination of an experimental enzyme inhibitor and the standard glioblastoma chemotherapy drug, temozolomide.

Study: Cells of three advanced cancers die with drug-like compounds that reverse chemo failure

January 23, 2018
Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggressive cancers—ovarian, prostate and breast.

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.