Major discovery on the mechanism of drug resistance in leukemia and other cancers

May 28, 2014, University of Montreal
A Wright's stained bone marrow aspirate smear from a patient with precursor B-cell acute lymphoblastic leukemia. Credit: VashiDonsk/Wikipedia

A mechanism that enables the development of resistance to Acute Myeloid Leukemia (AML) anticancer drugs, thereby leading to relapse, has been identified by Kathy Borden of the University of Montreal's Institute for Research in Immunology and Cancer (IRIC) and her collaborators. Kathy Borden is a Principal Investigator at IRIC and a professor at the university's Department of Pathology and Cell Biology. The development of drug resistance is one of the main problems in clinical oncology and the cause of relapse in many patients.

The new discovery, recently published in the prestigious scientific journal Nature, constitutes a major breakthrough in the fight against AML, one of the deadliest forms of leukemia, because it immediately suggests strategies to overcome drug resistance. Furthermore, the type of drug resistance the team identified is likely implicated in other cancers and a successful new treatment regimen based on these findings could have broad applications in treating cancer.

Previous work by Professor Borden's team had indicated that the use of ribavirin, a compound that was originally developed as an , could result in real benefits for certain cancer patients. With support from The Leukemia & Lymphoma Society of the USA, a first clinical trial using ribavirin to treat poor-prognosis AML patients was performed under the supervision of Dr. Sarit Assouline and Dr. Wilson Miller of the Segal Cancer Center at the Jewish General Hospital in Montréal.

"This first clinical study yielded extremely promising results in most patients, including remissions, with no significant treatment-related toxicity. However, as is often the case when using a single drug, all patients eventually relapsed," recall Drs. Assouline and Miller. The multi-center study also included patients from the Hôpital Maisonneuve-Rosemont (HMR) in Montreal and the McMaster University/Hamilton Health Sciences Center in Hamilton, Ontario.

In their recent article, the researchers describe why, in most of the patients, ribavirin as well as the standard chemotherapeutic drug cytarabine (Ara-C), eventually become ineffective at killing cancer cells. "By studying drug resistant cancer cells from AML patients and head and neck tumors, we found that a gene called "GLI1" is dramatically overactive in these cells," explains Hiba Zahreddine, doctoral student in the laboratory of Kathy Borden and first author of the Nature article. "With the help of our colleagues at Pharmascience Inc. we were then able to show that this results in a specific chemical change to the drugs, that prevents their toxicity toward the cancer cells," continues Professor Borden.

Fortunately, drugs that inhibit the activity of GLI1 are currently available and the scientists showed that these drugs could switch the back into a ribavirin-sensitive state. It is hoped that when used in combination-therapy with ribavirin (or more standard chemotherapy), these drugs will prevent the development of in patients. The team has now received approval from Health Canada to undertake a new clinical trial to test the novel drug combination in AML patients.

As part of its research partnership with Université de Montréal, Pharmascience Inc. will continue to manufacture and provide the ribavirin necessary for this clinical trial. "If this new approach is successful, it could have very broad applications since the mode of action of ribavirin suggests that it could be effective against up to 30% of all cancers including some types of breast, prostate, colon, stomach and head and neck cancers in addition to AML," explains Morris Goodman, co-founder and Chairman of the Board of Pharmascience Inc.

Explore further: Academia-industry partnership creates blueprint for collaboration to develop innovative new cancer treatment

More information: Zaheddine HA, Culjkovic-Kraljacic B, Assouline S, Gendron P, Romeo AA, Morris SJ, Cormack G, Jaquith JB, Cerchietti L, Cocolakis E, Bergeron J, Leber B, Becker MW, Pei S, Jordan CT, Miller WH, Borden KLB. The sonic hedgehog factor Gli1 imparts drug resistance through inducible glucuronidation, Nature, 2014. dx.doi.org/10.1038/nature13283

Related Stories

Academia-industry partnership creates blueprint for collaboration to develop innovative new cancer treatment

April 12, 2013
Canadians and patients around the world with the misfortune to be diagnosed with one of the deadliest forms of leukemia may soon be able to thank a multi-faceted collaboration in Montreal's biopharmaceutical cluster for giving ...

Phase 3 study may be game-changer for acute myeloid leukemia

April 24, 2014
Moffitt Cancer Center researchers say clinical trials for a new experimental drug to treat acute myeloid leukemia (AML) are very promising. Patients treated with CPX-351, a combination of the chemotherapeutic drugs cytarabine ...

Major breakthrough in developing new cancer drugs: Capturing leukemic stem cells

March 18, 2014
The Institute for Research in Immunology and Cancer (IRIC) at the Université de Montréal (UdeM), in collaboration with the Maisonneuve-Rosemont Hospital's Quebec Leukemia Cell Bank, recently achieved a significant breakthrough ...

Experimental drug shows promise for treatment-resistant leukemias

April 8, 2014
Research in mice and human cell lines has identified an experimental compound dubbed TTT-3002 as potentially one of the most potent drugs available to block genetic mutations in cancer cells blamed for some forms of treatment-resistant ...

Cancer stem cells linked to drug resistance

April 20, 2014
Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered a molecule, ...

Recommended for you

Cancer patients who tell their life story find more peace, less depression

January 22, 2018
Fifteen years ago, University of Wisconsin–Madison researcher Meg Wise began interviewing cancer patients nearing the end of life about how they were living with their diagnosis. She was surprised to find that many asked ...

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.