Where have all the mitochondria gone? Researchers shed light on a crucial step in fertilization

May 15, 2014

It's common knowledge that all organisms inherit their mitochondria – the cell's "power plants" – from their mothers. But what happens to all the father's mitochondria? Surprisingly, how – and why – paternal mitochondria are prevented from getting passed on to their offspring after fertilization is still shrouded in mystery; the only thing that's certain is that there must be a compelling reason, seeing as this phenomenon has been conserved throughout evolution.

Now, Dr. Eli Arama and a team in the Weizmann Institute's Molecular Genetics Department have discovered special cellular vesicles that originate in the female fruit flies' egg and which actively seek out and destroy the father's mitochondria upon fertilization.

This study, recently published in Development Cell, may help shed light on the prevailing theories. One holds that it is an active process in which paternal mitochondria are selectively degraded by a "self-eating" system known as autophagy, in which vesicles called autophagosomes engulf the cell's unwanted structures. But the autophagy study was conducted on worms (C. elegans) whose sperm are quite different from the long, flagellated "head" and "tail" structures of both mammalian and fruit-fly sperm. The tail comprises the mitochondria: a long tube attached to, or coiled around, the tail's skeletal structure. How would the tiny autophagosome engulf such a large structure – about 2 mm long in the fruit fly?

A second theory, based mainly on mouse models, states that the absence of paternal mitochondria is due to a passive process of dilution in the sea of maternal mitochondria. But that could not explain why certain genetic markers related to autophagy were still detected on the paternal mitochondria after fertilization.

The video will load shortly
Dr. Eli Arama’s research is supported by the Yeda-Sela Center for Basic Research, the Fritz Thyssen Stiftung; and the late Rudolfine Steindling. Dr. Arama is the incumbent of the Corinne S. Koshland Career Development Chair in Perpetuity.

Enter the egg's special cellular vesicles. The Weizmann team, led by Ph.D. students Liron Gal and Yoav Politi in Arama's group, together with former senior intern Yossi Kalifa and former Ph.D. student Liat Ravid, and with the assistance of Prof. Zvulun Elazar of the Biological Chemistry Department, found that as soon as the sperm enters the egg, the cellular vesicles – already present in the fruit fly egg – immediately attract to the sperm like a magnet. They then proceed to disintegrate the sperm's outer membrane and separate the mitochondria from the tail section, which is subsequently cut into smaller pieces that are then "devoured" by conventional selective autophagy.

But what were these vesicles? Close observation revealed they did not resemble an autophagosome, but rather a different type of vesicle that is usually involved in a distinct pathway. Yet these vesicles carried autophagy markers. Arama: "We were not witnessing classic autophagy machinery; these structures were too large and morphologically distinct to be typical autophagosomes."

The team's findings suggest that the egg's special cellular vesicles represent a new type of system that is a unique combination of three separate biological processes whose pathways may have diverged from their classic functions.

These new discoveries, which the scientists believe hold true for other organisms with flagellated sperm, including humans, may lead, among other things, toward an understanding of why only a quarter of IVF pregnancies carry to term. It may be that this invasive procedure somehow abrogates the ability of the egg to destroy the paternal mitochondria. Arama and team hope that further research will help shed new light on a variety of issues pertaining to paternal , with an ultimate goal of understanding mitochondrial turnover and male fertility.

Explore further: The long and short of sperm tails

More information: Paper: www.cell.com/developmental-cel … -5807%2814%2900204-4

Related Stories

The long and short of sperm tails

August 5, 2011
A team of biologists in Japan has uncovered an unexpected role for mitochondria1, the power houses of cells, in the development of sperm in the fruit fly Drosophila melanogaster.

Dysfunctional mitochondria may underlie resistance to radiation therapy

November 25, 2013
The resistance of some cancers to the cell-killing effects of radiation therapy may be due to abnormalities in the mitochondria – the cellular structures responsible for generating energy, according to an international ...

Zombie cancer cells eat themselves to live

April 5, 2014
A University of Colorado Cancer Center study recently published in the journal Cell Reports and presented today at the American Association for Cancer Research (AACR) Annual Conference 2014 shows that the cellular process ...

Stem cells overcome damage in other cells by exporting mitochondria

January 16, 2014
A research team has identified a protein that increases the transfer of mitochondria from mesenchymal stem cells to lung cells. In work published in The EMBO Journal, the researchers reveal that the delivery of mitochondria ...

Mitochondrial respiratory capacity, sperm motility linked

April 10, 2012
(HealthDay) -- Sperm with higher motility have increased mitochondrial respiratory capacity, according to a study published in the April issue of Urology.

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.