Researchers identify changes that may occur in neural circuits due to addiction

May 12, 2014
brain

A research team from the Friedman Brain Institute of the Icahn School of Medicine at Mount Sinai has published evidence that shows that subtle changes of inhibitory signaling in the reward pathway can change how animals respond to drugs such as cocaine. This is the first study to demonstrate the critical links between the levels of the trafficking protein, the potassium channels' effect on neuronal activity and a mouse's response to cocaine. Results from the study are published in the peer-reviewed journal Neuron on May 7, 2014.

The authors investigated the role of sorting nexin 27 (SNX27), a PDZ-containing protein known to bind GIRK2c/GIRK3 channels, in regulating GIRK currents in dopamine (DA) neurons on the (VTA) in mice.

"Our results identified a pathway for regulating the excitability of the VTA DA neurons, highlighting SNX27 as a promising target for treating addiction," said Paul A. Slesinger, PhD, Professor, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai.

"Future research will focus on the role that and trafficking proteins have in models of addiction," said Dr. Slesinger.

Dr. Slesinger was the lead author of the study and joined by Michaelanne B. Munoz from the Graduate Program in Biology, University of California, San Diego and the Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, California.

Explore further: Discovery of brain's natural resistance to drugs may offer clues to treating addition

Related Stories

Discovery of brain's natural resistance to drugs may offer clues to treating addition

March 8, 2012
A single injection of cocaine or methamphetamine in mice caused their brains to put the brakes on neurons that generate sensations of pleasure, and these cellular changes lasted for at least a week, according to research ...

Morphine and cocaine affect reward sensation differently

October 5, 2012
(Medical Xpress)—A new study by scientists in the US has found that the opiate morphine and the stimulant cocaine act on the reward centers in the brain in different ways, contradicting previous theories that these types ...

Opioid abuse initiates specific protein interactions in neurons in brain's reward system

February 24, 2014
Identifying the specific pathways that promote opioid addiction, pain relief, and tolerance are crucial for developing more effective and less dangerous analgesics, as well as developing new treatments for addiction. Now, ...

Promising new drug targets for cocaine addiction found

January 20, 2014
Researchers from the Icahn School of Medicine at Mount Sinai have identified a new molecular mechanism by which cocaine alters the brain's reward circuits and causes addiction. Published online in the journal Proceedings ...

Recommended for you

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

New study reveals contrasts in how groups of neurons function during decision making

July 19, 2017
By training mice to perform a sound identification task in a virtual reality maze, researchers at Harvard Medical School and the Istituto Italiano di Tecnologia (IIT) have identified striking contrasts in how groups of neurons ...

Healthy heart in 20s, better brain in 40s?

July 19, 2017
Folks with heart-healthy habits in their 20s tend to have larger, healthier brains in their 40s—brains that may be better prepared to withstand the ravages of aging, a new study reports.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.