Penn yeast study identifies novel longevity pathway

May 8, 2014, University of Pennsylvania School of Medicine
Sacharomyces cerevisiae cells in DIC microscopy. Credit: Wikipedia.

Ancient philosophers looked to alchemy for clues to life everlasting. Today, researchers look to their yeast. These single-celled microbes have long served as model systems for the puzzle that is the aging process, and in this week's issue of Cell Metabolism, they fill in yet another piece.

The study, led by researchers at the University of Pennsylvania, identifies a new molecular circuit that controls in and more complex organisms and suggests a therapeutic intervention that could mimic the lifespan-enhancing effect of caloric restriction, no dietary restrictions necessary. After all, says senior author Shelley Berger, PhD, "who wants to live on 500 calories a day?"

Berger, a Penn Integrates Knowledge Professor in the departments of Genetics and Cell and Developmental Biology at the Perelman School of Medicine and the department of Biology in the School of Arts and Sciences, studies epigenetics, the science of the control of genetic information. Epigenetics comprises multiple regulatory layers, including chromatin packaging—the orderly wrapping of DNA around histone proteins in the cell nucleus. By altering this DNA packaging, cells can control when and how genes are expressed.

"Aging is, in part, the accumulation of cellular stress," she explains. "If you can better respond to these stresses, this ameliorates the damage it can cause."

Berger and her team looked for chromatin-associated genes that could influence longevity by searching for genes that already were implicated in epigenetic regulation that might extend lifespan when deleted in the yeast, Saccharomyces cerevisiae. One such gene improved lifespan by about 25 percent – this would correspond to an increased lifespan in humans from 75 years to about 95 years – a substantial benefit to longevity, notes Berger. The research, conducted by postdoctoral fellow Weiwei Dang, PhD, aimed to unravel how this increase in longevity was achieved and if it was related to cellular stress.

First, the team asked whether the gene ISW2 is part of previously identified longevity pathways, especially those associated with , a well-known strategy for extending lifespan. But pathways involving a form of chromatin modification (histone acetylation) came up empty, as did an alternate pathway involving growth control, suggesting ISW2 functions through a never-before-seen mechanism.

The team then looked for answers in the function of the ISW2 protein, and found that its absence alters the expression of genes involved in protecting cells from such stresses as DNA damage. Deletion of ISW2 increases the expression and activity of genes in DNA-damage repair pathways – an effect also seen during calorie restriction.

The gene ISW2, it turns out, is involved in chromatin remodeling—it controls the spacing and distribution of the histone "spools" around which DNA wraps. Normally, ISW2 dampens stress-response pathways, possibly because overactivation of these pathways is deleterious early in life, Berger speculates. Deletion or inactivation of the ISW2 gene activates those pathways, priming the cells to more effectively handle stress-associated genetic scars as cells age.

This effect is not limited to yeast. When Berger's team reduced the levels of a related gene in the nematode worm, Caenorhabditis elegans, they observed a 15 percent improvement in longevity, which is similar in magnitude to the lifespan extension observed in other worm longevity pathways. Similarly, knocking down expression of a human homolog in cultured human cells boosted the expression of stress-response genes that, again, like yeast, occur in DNA-damage repair pathways.

These findings suggest a pathway analogous to the one identified in yeast performs a similar function in humans, keeping stress-response genes in check – and if inhibited, could boost these pathways. But that has yet to be established. And, it is far from clear if tweaking these pathways can actually extend healthy human lifespan – but, of course, a goal worthy of further investigation, say the authors.

But, if there is a human version of the ISW2 pathway, these data suggest a possible therapeutic strategy for combating aging-related disorders in humans, Berger says. Calorie-restricted diets have been shown to extend lifespan in organisms from yeast to primates. But such diets are, well, difficult to "stomach."

Assuming these findings can be replicated and extended to humans, small-molecule inhibitors of the human form of ISW2 could potentially replicate that effect, leading to clinical benefits without dietary restrictions. More research must be done to work that out, however, note the researchers.

Explore further: Drilling into the trends in genetics and epigenetics of aging and longevity

Related Stories

Drilling into the trends in genetics and epigenetics of aging and longevity

March 28, 2014
An international group of scientists performed a comprehensive analysis of the genetic and epigenetic mechanisms and demonstrated that the majority of the genes, as well as genetic and epigenetic mechanisms that are involved ...

Study pinpoints genes involved in diet-mediated life-extension

August 14, 2012
Researchers at the University of Liverpool have developed a new method to identify genes involved in diet-mediated life-extension which allowed them to find three novel genes that extend lifespan in yeast.

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.