Peril posed by gene mutations often depends on degree to which allele expressed, study finds

May 19, 2014 by Krista Conger, Stanford University Medical Center

(Medical Xpress)—It's abundantly clear by now that the sequence of our genes can be important to our health.

Mutations in some key areas can lead to the development of diseases such as cancer.

However, isn't everything. It's necessary to know when and at what levels that mutated gene is expressed in the body's cells and tissues.

This analysis is complicated by the fact that most of us have two copies of every gene—one from our father and one from our mother—with the exception of sex chromosomes X and Y. (People with conditions caused by an abnormal number of chromosomal copies, such as Down syndrome, are another exception.)

These two versions of the same gene (individually called ) are not always expressed in the same way (a phenomenon called allele-specific ). In particular, structural changes or other modifications to the alleles, or the RNA that is made from them, can significantly affect levels of expression. This matters when one copy has a mutation that could cause a disease like cancer. That mutation could be very important if that allele is preferentially expressed, or less important if its partner is favored.

Understanding relative levels of allele expression is therefore critical to determining the effect of particular mutations in our genome. But it's been difficult to accomplish, in part because allele-specific expression can vary among our body's tissues.

Stephen Montgomery, PhD, assistant professor of pathology and of genetics, and Jin Billy Li, PhD, assistant professor of genetics, have devised a way to use microfluidic and deep-sequencing technology to measure the relative levels of expression of each allele in various tissues. They described the technique in the January issue of Nature Methods.

Now they've taken the research one step further to look at the varying expression of disease-associated alleles across 10 tissues from a single individual.

"We were able to learn that as many as one-third of personal genome variants (that is, potentially damaging mutations that would be detected by genome sequencing within an individual) can be modified by allele-specific expression in ways that could influence individual outcomes," Montgomery said. "Therefore, just knowing a variant exists is only one step toward predicting clinical outcome in an individual. It is also necessary to know the context of that variant. Is the damaging allele in a gene that is abundantly expressed within and across an individual's tissues?"

Montgomery and Li published these most recent findings May 1 in PLOS Genetics. Together, their work has been awarded a grant from the National Human Genome Research Institute to study allele-specific expression in thousands of tissues from 100 donors during the next three years. The grant is part of the institute's Genotype-Tissue Expression effort.

Explore further: Random chance may explain hereditary disease

Related Stories

Random chance may explain hereditary disease

January 10, 2014
(Medical Xpress)—A new study from Karolinska Institutet and the Ludwig Institute for Cancer Research shows that random chance decides whether the gene copy you inherit from your mother or the one from your father is used ...

Novel analyses improve identification of cancer-associated genes from microarray data

May 2, 2014
Dartmouth Institute for Quantitative Biomedical Sciences (iQBS) researchers developed a new gene expression analysis approach for identifying cancer genes. The paper entitled, "How to get the most from microarray data: advice ...

Recommended for you

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

The coming of age of gene therapy: A review of the past and path forward

January 11, 2018
After three decades of hopes tempered by setbacks, gene therapy—the process of treating a disease by modifying a person's DNA—is no longer the future of medicine, but is part of the present-day clinical treatment toolkit. ...

Large-scale study to pinpoint genes linked to obesity

January 10, 2018
It's not just diet and physical activity; your genes also determine how easily you lose or gain weight. In a study published in the January issue of Nature Genetics, researchers at the Icahn School of Medicine at Mount Sinai ...

Identical twins can share more than identical genes

January 9, 2018
An international group of researchers has discovered a new phenomenon that occurs in identical twins: independent of their identical genes, they share an additional level of molecular similarity that influences their biological ...

Hereditary facial features could be strongly influenced by a single gene variant, a new study finds

January 9, 2018
Do you have your grandmother's eyes? Or your father's nose? A new study by the Universities of Oxford and Surrey has uncovered variations in singular genes that have a large impact on human facial features, paving the way ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
not rated yet May 19, 2014
Journal article excerpt: "...the functional impact of potentially pathogenic protein-coding variants remains difficult to ascertain by DNA sequencing or computational prediction methods alone."

That fact attests to the pseudoscientific nonsense of theories that try to link mutations and natural selection to biodiversity. Instead, gene expression is nutrient-dependent and the metabolism of nutrients to species-specific pheromones controls the physiology of reproduction, which determines whether or not transgenerational epigenetic inheritance occurs.

Thus, inheritance occurs via conserved molecular mechanisms in species from microbes to man. The epigenetic landscape is linked to the physical landscape of DNA in organized genomes via the effects of food odors and pheromones, which enable ecological, social, neurogenic, and socio-cognitive niche construction associated with increasing organismal complexity sans mutations.

http://www.ncbi.n...24693353
anonymous_9001
not rated yet May 20, 2014
Once again, you demonstrate that you don't know the difference between sequence and expression. This article isn't about expression, it's about mutations, which are changes in sequence.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.