Study breathes understanding into plutonium-nitrate effects

May 13, 2014
An autoradiograph of a human subject’s respiratory tissue shows alpha star aggregate of plutonium, localized within connective tissue along the pleura membrane that covers the lung. Other black material in the image is cigarette residue.

A study led by Pacific Northwest National Laboratory (PNNL) scientists offers new insights into the retention of plutonium-nitrate in the lungs-as well as clues as to the cellular processes and structural changes that might lead to tissue damage and tumor formation.

In this unique inquiry, researchers from PNNL, Battelle Toxicology Northwest, and the United States Transuranium and Uranium Registries (USTUR) at Washington State University prepared, analyzed, and compared archived from a deceased nuclear worker and beagle dogs. All of the subjects had inhaled plutonium. The research team sought to better understand what happens after plutonium-nitrate, a moderately soluble form of plutonium, is inhaled, deposited in the lungs, and retained.

In both the human and beagles, there were statistically significant modifications in the expression of three regulatory proteins-Fas ligand (FASLG), B-cell lymphoma 2 (BCL2), and Caspase 3 (CASP3). FASLG influences the immune system and cancer progression; BCL2 regulates apoptosis, or cell death; and CASP3 also plays a role in apoptosis. The research findings suggest that these proteins, as well as apoptosis, are central in coordinating the body's responses to the long-term presence of plutonium-nitrate in the lungs.

While much is known about plutonium from biological, radiological, and toxicokinetic perspectives, there is not yet a clear understanding of the specific mechanisms by which ionizing radiation produces its effects or about the resulting long-term health consequences.

The PNNL-led research sought to investigate whether plutonium retention produces elevated levels of cell death and to test the hypothesis that plutonium exposure results in alterations of expression profiles of selected factors. The study adds to the body of fundamental knowledge regarding lung morphology and gene expression modifications.

"The methods used here undoubtedly will extend to future research, building upon the advances of this project," says Dr. William Morgan, a PNNL radiation biologist and member of the research team.

The carcinogenic and inflammatory effects of plutonium-nitrate retention were examined from a human and large animal perspective. The project obtained tissue from a deceased nuclear worker who had accidentally inhaled plutonium approximately 38 years before his death. Tissue from another deceased nuclear worker served as a control. Both individuals had donated their bodies to science, and the tissue samples were stored at USTUR in light-sealed containers and maintained at a constant and appropriate temperature. The study also included tissues from 15 beagle dogs. The dogs were subjected to inhalation exposure of -nitrate as part of a 1970s study that continued for more than a decade.

Tissue material was selected at random, prepared and examined using immunohistochemistry and quantitative reverse transcriptase-polymerase chain reaction techniques. An assay method—terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)—was employed to analyze apoptosis in the tissue samples.

Explore further: Plutonium tricks cells by 'pretending' to be iron

More information: Nielsen CE, X Wang, RJ Robinson, AL Brooks, J Lovaglio, KM Patton, SL McComish, SY Tolmachev, and WF Morgan. 2014. "Carcinogenic and Inflammatory Effects of Plutonium-Nitrate Retention in an Exposed Nuclear Worker and Beagle Dogs." International Journal of Radiation Biology 90(1):60-70. DOI: 10.3109/09553002.2014.859765.

Nielsen CE, DA Wilson, AL Brooks, SL McCord, GE Dagle, AC James, SY Tolmachev, BD Thrall, and WF Morgan. 2012. "Microdistribution and Long-Term Retention of 239Pu (NO3)4 in the Respiratory Tracts of an Acutely Exposed Plutonium Worker and Experimental Beagle Dogs." Cancer Research 72(21):5529-5536. DOI: 10.1158/0008-5472.CAN-12-1824.

Related Stories

Plutonium tricks cells by 'pretending' to be iron

July 11, 2011
(PhysOrg.com) -- Plutonium gets taken up by our cells much as iron does, even though there's far less of it to go around.

New thermodynamic model predicts plutonium solubility with iron

August 4, 2011
A hard-to-detect but stable form of iron helps convert subsurface plutonium from barely to very soluble, according to scientists at Pacific Northwest National Laboratory and Rai Enviro-Chem, LLC. Plutonium resides underground ...

Recommended for you

Manipulating a type of brain cell gets weight loss results in mice

July 28, 2017
A new study has found something remarkable: the activation of a particular type of immune cell in the brain can, on its own, lead to obesity in mice. This striking result provides the strongest demonstration yet that brain ...

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.