Ten year study shows 'Lethal Factor' could be X-factor for new anthrax vaccine

May 1, 2014, Imperial College London

Researchers have identified a section of the anthrax toxin Lethal Factor that could help produce a more effective vaccine.

Anthrax is a potentially lethal disease caused by a bacterium called Bacillus anthracis. The bacteria produce spores that when inhaled, ingested or absorbed into the skin release toxins. When anthrax affects the lungs or intestines it can cause death within a few days whilst infection of the skin (cutaneous anthrax) is less dangerous.

Infection can occur from contact with infected livestock, meat or hides, but most people know about anthrax from its use as a biological weapon, notably in the 2001 attacks through the US postal system. The anthrax bacterium can be used in this way because its spores survive for long amounts of time and are easily reproduced.

The international research team led by Professor Danny Altmann from Imperial College London was funded by US National Institute of Health (NIH) to explore a new form of vaccine against the anthrax bacterium. Published in PLOS Pathogens the study focussed on the part of the toxin known as the 'Lethal Factor' (LF). The interest in LF was triggered by research on a cohort of Turkish farmers who had developed natural immunity to the less dangerous form of cutaneous anthrax.

By studying this group and using a mouse model, the researchers mapped the regions of the LF toxin targeted by protective T lymphocytes (a type of white cell that is essential for human immunity). They found a specific part that could form the basis for a vaccine since it elicits a highly effective and works across a wide range of people. Using this section of the LF protein they successfully protected mice against the toxic effects of the anthrax bacterium.

Professor Altmann from Imperial College London's Department of Medicine said: "We have discovered a tiny section of protein that could potentially protect against this horrific disease. Although we mostly work at the molecular level of immunity we wanted to start with the bigger picture so we studied a community of Turkish farmers exposed to anthrax to see how their had developed."

Vaccination works by stimulating our immune systems to make protective antibodies. The toxic effects of anthrax are caused by a combination of three proteins – Protective Antigen (PA), Edema factor (EF) and Lethal Factor (LF). On their own each of these individual proteins are not toxic but they can still produce an immune response in terms of stimulating white blood cells. This makes them potential candidates on which to base a vaccine.

Initial anthrax vaccines used weakened forms of the anthrax spore, which produced some concerning side effects. More recently researchers have developed next generation vaccines to protect the military against bioterrorism.

Until now these have focussed on the Protective Antigen (PA) protein as a means to stimulate the immune system but these vaccines require extensive treatment regimes and there are concerns about effectiveness and longevity. Research on immunity in the Turkish farmers who had developed cutaneous anthrax indicated they had developed a natural immune response to both PA and LF, suggesting that immunity to the Lethal Factor (LF) protein may contribute to protection.

Working both with blood samples from the previously infected farmers and with a mouse model, the researchers confirmed that LF protein provoked a strong immune response to anthrax. They honed in on two particular sections, or peptides, that make up the protein (LF 457-476 and LF 467-486), which stimulated particularly strong immunity and produced this effect over a wide range of genetic differences in 'tissue type'. This increases the chance that a vaccine based on these peptides would offer protection across genetically diverse human populations.

Finally, in collaboration with a team at the Defence Science and Technology Laboratory Porton Down, the researchers treated mice with a vaccine based on this region of the LF protein. This was shown to provide protection to the mice against the of .

"Perhaps 90 per cent of research into vaccines has looked at PA but there are many other proteins to consider, including LF," said Professor Altmann. "In this research we are not trying to revolutionise current vaccines, which is a long-haul process. Rather we are trying to demystify the immunology of this frightening infection, hopefully providing clues to help develop future vaccines."

Explore further: Anthrax capsule vaccine protects monkeys from lethal infection

More information: S.Ascough et al. 'Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity' PLOS Pathogens (2014) dx.plos.org/10.1371/journal.ppat.1004085

Related Stories

Anthrax capsule vaccine protects monkeys from lethal infection

January 12, 2012
a naturally occurring component of the bacterium that causes the disease—protected monkeys from lethal anthrax infection, according to U.S. Army scientists. The study, which appears in the Jan. 20th print edition of ...

Pediatricians should plan for anthrax attack, US experts say

April 28, 2014
(HealthDay)—Children may require different treatment than adults after exposure to anthrax, says a new report from leading U.S. pediatricians and health officials.

Scientists describe how anthrax toxins cause illness, death

August 28, 2013
Researchers at the National Institute of Allergy and Infectious Diseases (NIAID) and the National Heart, Lung, and Blood Institute, both part of the National Institutes of Health, have identified the cells in two distinct ...

FDA approves new drug for inhaled anthrax

December 14, 2012
Federal health officials say they approved a new injectable drug from Human Genome Sciences to treat inhalable anthrax.

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.